These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Homogeneous nucleation of a homologous series of n-alkanes (C(i)H(2i+2), i=7-10) in a supersonic nozzle. Ghosh D; Bergmann D; Schwering R; Wölk J; Strey R; Tanimura S; Wyslouzil BE J Chem Phys; 2010 Jan; 132(2):024307. PubMed ID: 20095674 [TBL] [Abstract][Full Text] [Related]
6. Homogeneous nucleation of carbon dioxide in supersonic nozzles II: molecular dynamics simulations and properties of nucleating clusters. Halonen R; Tikkanen V; Reischl B; Dingilian KK; Wyslouzil BE; Vehkamäki H Phys Chem Chem Phys; 2021 Feb; 23(8):4517-4529. PubMed ID: 33595558 [TBL] [Abstract][Full Text] [Related]
7. Recent developments in the kinetic theory of nucleation. Ruckenstein E; Djikaev YS Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628 [TBL] [Abstract][Full Text] [Related]
8. Binary nucleation rates for ethanol/water mixtures in supersonic Laval nozzles: analyses by the first and second nucleation theorems. Tanimura S; Pathak H; Wyslouzil BE J Chem Phys; 2013 Nov; 139(17):174311. PubMed ID: 24206302 [TBL] [Abstract][Full Text] [Related]
9. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation. Römer F; Kraska T J Chem Phys; 2007 Dec; 127(23):234509. PubMed ID: 18154402 [TBL] [Abstract][Full Text] [Related]
10. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation. Chesnokov EN; Krasnoperov LN J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720 [TBL] [Abstract][Full Text] [Related]
12. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors. Abdelsayed V; El-Shall MS J Chem Phys; 2014 Aug; 141(5):054710. PubMed ID: 25106603 [TBL] [Abstract][Full Text] [Related]
13. Homogeneous nucleation of n-propanol, n-butanol, and n-pentanol in a supersonic nozzle. Gharibeh M; Kim Y; Dieregsweiler U; Wyslouzil BE; Ghosh D; Strey R J Chem Phys; 2005 Mar; 122(9):094512. PubMed ID: 15836155 [TBL] [Abstract][Full Text] [Related]
14. Water nucleation at extreme supersaturation. Lippe M; Chakrabarty S; Ferreiro JJ; Tanaka KK; Signorell R J Chem Phys; 2018 Dec; 149(24):244303. PubMed ID: 30599746 [TBL] [Abstract][Full Text] [Related]
15. Using small angle x-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions. Ghosh D; Manka A; Strey R; Seifert S; Winans RE; Wyslouzil BE J Chem Phys; 2008 Sep; 129(12):124302. PubMed ID: 19045018 [TBL] [Abstract][Full Text] [Related]
16. Rate constants for OH with selected large alkanes: shock-tube measurements and an improved group scheme. Sivaramakrishnan R; Michael JV J Phys Chem A; 2009 Apr; 113(17):5047-60. PubMed ID: 19348456 [TBL] [Abstract][Full Text] [Related]
17. Molecular-dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble. Kraska T J Chem Phys; 2006 Feb; 124(5):054507. PubMed ID: 16468894 [TBL] [Abstract][Full Text] [Related]
18. Homogeneous nucleation rate measurements in supersaturated water vapor II. Brus D; Zdímal V; Uchtmann H J Chem Phys; 2009 Aug; 131(7):074507. PubMed ID: 19708751 [TBL] [Abstract][Full Text] [Related]