BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31640499)

  • 1. Accurate and efficient discretizations for stochastic models providing near agent-based spatial resolution at low computational cost.
    Fadai NT; Baker RE; Simpson MJ
    J R Soc Interface; 2019 Oct; 16(159):20190421. PubMed ID: 31640499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models.
    Simpson MJ; Baker RE; Buenzli PR; Nicholson R; Maclaren OJ
    J Theor Biol; 2022 Sep; 549():111201. PubMed ID: 35752285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete and Continuum Approximations for Collective Cell Migration in a Scratch Assay with Cell Size Dynamics.
    Matsiaka OM; Penington CJ; Baker RE; Simpson MJ
    Bull Math Biol; 2018 Apr; 80(4):738-757. PubMed ID: 29372496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice-free models of cell invasion: discrete simulations and travelling waves.
    Plank MJ; Simpson MJ
    Bull Math Biol; 2013 Nov; 75(11):2150-66. PubMed ID: 23955282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Moment Description of Birth-Death-Movement Processes Incorporating the Effects of Crowding and Obstacles.
    Surendran A; Plank MJ; Simpson MJ
    Bull Math Biol; 2018 Nov; 80(11):2828-2855. PubMed ID: 30097916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuum descriptions of spatial spreading for heterogeneous cell populations: Theory and experiment.
    Matsiaka OM; Baker RE; Simpson MJ
    J Theor Biol; 2019 Dec; 482():109997. PubMed ID: 31491498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended logistic growth model for heterogeneous populations.
    Jin W; McCue SW; Simpson MJ
    J Theor Biol; 2018 May; 445():51-61. PubMed ID: 29481822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging the gap between individual-based and continuum models of growing cell populations.
    Chaplain MAJ; Lorenzi T; Macfarlane FR
    J Math Biol; 2020 Jan; 80(1-2):343-371. PubMed ID: 31183520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.
    Yates CA; Flegg MB
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying density-dependent interactions in collective cell behaviour.
    Browning AP; Jin W; Plank MJ; Simpson MJ
    J R Soc Interface; 2020 Apr; 17(165):20200143. PubMed ID: 32343933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic Turing patterns: analysis of compartment-based approaches.
    Cao Y; Erban R
    Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logistic Proliferation of Cells in Scratch Assays is Delayed.
    Jin W; Shah ET; Penington CJ; McCue SW; Maini PK; Simpson MJ
    Bull Math Biol; 2017 May; 79(5):1028-1050. PubMed ID: 28337676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age Structure Can Account for Delayed Logistic Proliferation of Scratch Assays.
    Ponce Bobadilla AV; Carraro T; Byrne HM; Maini PK; Alarcón T
    Bull Math Biol; 2019 Jul; 81(7):2706-2724. PubMed ID: 31201661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions.
    Jin W; Penington CJ; McCue SW; Simpson MJ
    Phys Biol; 2016 Oct; 13(5):056003. PubMed ID: 27716634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of scratch assays is affected by the initial degree of confluence: Experiments, modelling and model selection.
    Jin W; Shah ET; Penington CJ; McCue SW; Chopin LK; Simpson MJ
    J Theor Biol; 2016 Feb; 390():136-45. PubMed ID: 26646767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computationally Efficient Modelling of Stochastic Spatio-Temporal Dynamics in Biomolecular Networks.
    Kim J; Foo M; Bates DG
    Sci Rep; 2018 Feb; 8(1):3498. PubMed ID: 29472589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the derivation of approximations to cellular automata models and the assumption of independence.
    Davies KJ; Green JE; Bean NG; Binder BJ; Ross JV
    Math Biosci; 2014 Jul; 253():63-71. PubMed ID: 24769324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual-based and continuum models of growing cell populations: a comparison.
    Byrne H; Drasdo D
    J Math Biol; 2009 Apr; 58(4-5):657-87. PubMed ID: 18841363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the roles of cell motility and cell proliferation in a circular barrier assay.
    Simpson MJ; Treloar KK; Binder BJ; Haridas P; Manton KJ; Leavesley DI; McElwain DL; Baker RE
    J R Soc Interface; 2013 May; 10(82):20130007. PubMed ID: 23427098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuum approximations for lattice-free multi-species models of collective cell migration.
    Matsiaka OM; Penington CJ; Baker RE; Simpson MJ
    J Theor Biol; 2017 Jun; 422():1-11. PubMed ID: 28400108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.