These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 31640508)

  • 1. Shear-sensitive adhesion enables size-independent adhesive performance in stick insects.
    Labonte D; Struecker MY; Birn-Jeffery AV; Federle W
    Proc Biol Sci; 2019 Oct; 286(1913):20191327. PubMed ID: 31640508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion.
    Federle W; Labonte D
    Philos Trans R Soc Lond B Biol Sci; 2019 Oct; 374(1784):20190199. PubMed ID: 31495309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attachment performance of stick insects (Phasmatodea) on convex substrates.
    Büscher TH; Becker M; Gorb SN
    J Exp Biol; 2020 Sep; 223(Pt 17):. PubMed ID: 32723763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect
    Thomas J; Gorb SN; Büscher TH
    Beilstein J Nanotechnol; 2024; 15():612-630. PubMed ID: 38887530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting of the tarsal adhesive fluid determines underwater adhesion in ladybird beetles.
    Sudersan P; Kappl M; Pinchasik BE; Butt HJ; Endlein T
    J Exp Biol; 2021 Oct; 224(20):. PubMed ID: 34581416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme suction attachment performance from specialised insects living in mountain streams (Diptera: Blephariceridae).
    Kang V; White RT; Chen S; Federle W
    Elife; 2021 Nov; 10():. PubMed ID: 34731079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When the going gets rough - studying the effect of surface roughness on the adhesive abilities of tree frogs.
    Crawford N; Endlein T; Pham JT; Riehle M; Barnes WJ
    Beilstein J Nanotechnol; 2016; 7():2116-2131. PubMed ID: 28144558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review.
    Büscher TH; Gorb SN
    Beilstein J Nanotechnol; 2021; 12():725-743. PubMed ID: 34354900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect wet steps: loss of fluid from insect feet adhering to a substrate.
    Kovalev AE; Filippov AE; Gorb SN
    J R Soc Interface; 2013 Jan; 10(78):20120639. PubMed ID: 23034352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes.
    Gorb EV; Gorb SN
    Beilstein J Nanotechnol; 2024; 15():385-395. PubMed ID: 38633766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree frog attachment: mechanisms, challenges, and perspectives.
    Langowski JKA; Dodou D; Kamperman M; van Leeuwen JL
    Front Zool; 2018; 15():32. PubMed ID: 30154908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sticking to it: testing passive pull-off forces in waterfall-climbing fishes across challenging substrates.
    Palecek AM; Schoenfuss HL; Blob RW
    J Exp Biol; 2021 Jan; 224(Pt 2):. PubMed ID: 33328291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system.
    Gorb EV; Hosoda N; Miksch C; Gorb SN
    J R Soc Interface; 2010 Nov; 7(52):1571-9. PubMed ID: 20427333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths.
    Gorb E; Böhm S; Jacky N; Maier LP; Dening K; Pechook S; Pokroy B; Gorb S
    Beilstein J Nanotechnol; 2014; 5():1031-41. PubMed ID: 25161838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate-dependent adhesion together with limb collaborations facilitate grasshoppers reliable attachment under highly dynamic conditions.
    Song Y; Dai Z; Ji A; Wu H; Gorb S
    iScience; 2023 Nov; 26(11):108264. PubMed ID: 37965153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Underwater Adhesion: The Unique C-shaped Suckers of Net-winged Midge Larvae (Blepharicera sp.).
    Liu GL; Chang HK; Chuang YC; Lin YM; Chen PY
    Sci Rep; 2020 Jun; 10(1):9395. PubMed ID: 32523030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications for directionality of nanoscale forces in bacterial attachment.
    Swartjes JJ; Veeregowda DH
    Biophys Rep; 2015; 1():120-126. PubMed ID: 27340690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion and friction of the smooth attachment system of the cockroach
    Betz O; Frenzel M; Steiner M; Vogt M; Kleemeier M; Hartwig A; Sampalla B; Rupp F; Boley M; Schmitt C
    Biol Open; 2017 May; 6(5):589-601. PubMed ID: 28507055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable adhesion behavior in underwater environments.
    Wu H; Zhang B; Liu X; Liu Y; Cui J; Chu Z
    Soft Matter; 2023 Aug; 19(34):6468-6479. PubMed ID: 37404181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic mucus secretion in ventral surfaces of toe pads of the tree frog (Dryophytes japonica).
    Seol JU; Park JS; Lim JH; Hwang HS; Kim EB; Kim SG; Park JI; Sung HC; Kim JH; Kim ES
    Integr Zool; 2024 Mar; ():. PubMed ID: 38556643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.