These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 31640516)
1. Transcriptional analysis of insect extreme freeze tolerance. Des Marteaux LE; Hůla P; Koštál V Proc Biol Sci; 2019 Oct; 286(1913):20192019. PubMed ID: 31640516 [TBL] [Abstract][Full Text] [Related]
2. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Kostál V; Zahradnícková H; Šimek P Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13041-6. PubMed ID: 21788482 [TBL] [Abstract][Full Text] [Related]
3. Insect fat body cell morphology and response to cold stress is modulated by acclimation. Des Marteaux LE; Štětina T; Koštál V J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30190314 [TBL] [Abstract][Full Text] [Related]
4. Insect mitochondria as targets of freezing-induced injury. Štětina T; Des Marteaux LE; Koštál V Proc Biol Sci; 2020 Jul; 287(1931):20201273. PubMed ID: 32693722 [TBL] [Abstract][Full Text] [Related]
5. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. Rozsypal J; Moos M; Šimek P; Koštál V J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29496781 [TBL] [Abstract][Full Text] [Related]
6. Recovery from supercooling, freezing, and cryopreservation stress in larvae of the drosophilid fly, Chymomyza costata. Štětina T; Hůla P; Moos M; Šimek P; Šmilauer P; Koštál V Sci Rep; 2018 Mar; 8(1):4414. PubMed ID: 29535362 [TBL] [Abstract][Full Text] [Related]
7. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. Poupardin R; Schöttner K; Korbelová J; Provazník J; Doležel D; Pavlinic D; Beneš V; Koštál V BMC Genomics; 2015 Sep; 16():720. PubMed ID: 26391666 [TBL] [Abstract][Full Text] [Related]
8. How crickets become freeze tolerant: The transcriptomic underpinnings of acclimation in Gryllus veletis. Toxopeus J; Des Marteaux LE; Sinclair BJ Comp Biochem Physiol Part D Genomics Proteomics; 2019 Mar; 29():55-66. PubMed ID: 30423515 [TBL] [Abstract][Full Text] [Related]
9. Insect cross-tolerance to freezing and drought stress: role of metabolic rearrangement. Hůla P; Moos M; Des Marteaux L; Šimek P; Koštál V Proc Biol Sci; 2022 Jun; 289(1976):20220308. PubMed ID: 35673862 [TBL] [Abstract][Full Text] [Related]
10. Mortality caused by extracellular freezing is associated with fragmentation of nuclear DNA in larval haemocytes of two drosophilid flies. Štětina T; Koštál V J Exp Biol; 2023 Nov; 226(21):. PubMed ID: 37846596 [TBL] [Abstract][Full Text] [Related]
11. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Kostál V; Berková P; Simek P Comp Biochem Physiol B Biochem Mol Biol; 2003 Jul; 135(3):407-19. PubMed ID: 12831761 [TBL] [Abstract][Full Text] [Related]
13. Hepatic transcriptome of the freeze-tolerant Cope's gray treefrog, Dryophytes chrysoscelis: responses to cold acclimation and freezing. do Amaral MCF; Frisbie J; Crum RJ; Goldstein DL; Krane CM BMC Genomics; 2020 Mar; 21(1):226. PubMed ID: 32164545 [TBL] [Abstract][Full Text] [Related]
14. Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress. Grgac R; Rozsypal J; Des Marteaux L; Štětina T; Koštál V Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2211744119. PubMed ID: 36191219 [TBL] [Abstract][Full Text] [Related]
15. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Koštál V; Štětina T; Poupardin R; Korbelová J; Bruce AW Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8532-8537. PubMed ID: 28720705 [TBL] [Abstract][Full Text] [Related]
16. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes. Ronges D; Walsh JP; Sinclair BJ; Stillman JH J Exp Biol; 2012 Jun; 215(Pt 11):1824-36. PubMed ID: 22573761 [TBL] [Abstract][Full Text] [Related]
17. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance. Jagdale GB; Grewal PS Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652 [TBL] [Abstract][Full Text] [Related]
18. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Toxopeus J; Koštál V; Sinclair BJ Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098 [TBL] [Abstract][Full Text] [Related]
19. Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly, Moos M; Korbelová J; Štětina T; Opekar S; Šimek P; Grgac R; Koštál V Metabolites; 2022 Feb; 12(2):. PubMed ID: 35208237 [TBL] [Abstract][Full Text] [Related]
20. Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae). Toxopeus J; McKinnon AH; Štětina T; Turnbull KF; Sinclair BJ J Insect Physiol; 2019; 113():9-16. PubMed ID: 30582905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]