These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31641169)

  • 1. Mid-Infrared Electro-Optical Modulation Using Monolithically Integrated Titanium Dioxide on Lithium Niobate Optical Waveguides.
    Jin T; Zhou J; Lin PT
    Sci Rep; 2019 Oct; 9(1):15130. PubMed ID: 31641169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically generated optical waveguide in a lithium-niobate thin film.
    Chen Q; Zhu Y; Wu D; Li T; Li Z; Lu C; Chiang KS; Zhang X
    Opt Express; 2020 Sep; 28(20):29895-29903. PubMed ID: 33114878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithically Integrated Si-on-AlN Mid-Infrared Photonic Chips for Real-Time and Label-Free Chemical Sensing.
    Jin T; Lin HG; Lin PT
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42905-42911. PubMed ID: 29171251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes.
    Chen L; Wood MG; Reano RM
    Opt Express; 2013 Nov; 21(22):27003-10. PubMed ID: 24216923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolithic Mid-Infrared Integrated Photonics Using Silicon-on-Epitaxial Barium Titanate Thin Films.
    Jin T; Li L; Zhang B; Lin HG; Wang H; Lin PT
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21848-21855. PubMed ID: 28580780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Electrodes for Filtering the Localized Fundamental Mode of a Ridge Optical Waveguide on a Thin Lithium Niobate Nanofilm.
    Parfenov M; Agruzov P; Tronev A; Ilichev I; Usikova A; Zadiranov Y; Shamrai A
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform.
    Bahadori M; Yang Y; Hassanien AE; Goddard LL; Gong S
    Opt Express; 2020 Sep; 28(20):29644-29661. PubMed ID: 33114859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TE/TM mode electro-optic conversion based on a titanium diffusion lithium niobate waveguide with a polarization-maintained fiber structure.
    Li Y; Yang Z; Chen H; Liu R; Peng J; Fu F; Yang T; Guan H; Yang X; Di H; Lu H
    Appl Opt; 2023 Nov; 62(32):8661-8669. PubMed ID: 38037983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator.
    Ahmed ANR; Shi S; Zablocki M; Yao P; Prather DW
    Opt Lett; 2019 Feb; 44(3):618-621. PubMed ID: 30702693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable polarization mode conversion using thin-film lithium niobate ridge waveguide.
    Yang G; Sergienko AV; Ndao A
    Opt Express; 2021 Jun; 29(12):18565-18571. PubMed ID: 34154110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active silicon integrated nanophotonics: ferroelectric BaTiO₃ devices.
    Xiong C; Pernice WH; Ngai JH; Reiner JW; Kumah D; Walker FJ; Ahn CH; Tang HX
    Nano Lett; 2014 Mar; 14(3):1419-25. PubMed ID: 24447145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact MZI modulators on thin film Z-cut lithium niobate.
    Hassanien AE; Ghoname AO; Chow E; Goddard LL; Gong S
    Opt Express; 2022 Jan; 30(3):4543-4552. PubMed ID: 35209688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a hybrid As₂S₃-Ti:LiNbO₃ optical waveguide for phase-matched difference frequency generation at mid-infrared.
    Wang X; Madsen CK
    Opt Express; 2014 Nov; 22(22):27183-92. PubMed ID: 25401869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform.
    Churaev M; Wang RN; Riedhauser A; Snigirev V; Blésin T; Möhl C; Anderson MH; Siddharth A; Popoff Y; Drechsler U; Caimi D; Hönl S; Riemensberger J; Liu J; Seidler P; Kippenberg TJ
    Nat Commun; 2023 Jun; 14(1):3499. PubMed ID: 37311746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High density lithium niobate photonic integrated circuits.
    Li Z; Wang RN; Lihachev G; Zhang J; Tan Z; Churaev M; Kuznetsov N; Siddharth A; Bereyhi MJ; Riemensberger J; Kippenberg TJ
    Nat Commun; 2023 Aug; 14(1):4856. PubMed ID: 37563149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-optical tunable interleaver in hybrid silicon and lithium niobate thin films.
    Li Q; Zhu H; Zhang H; Hu H
    Opt Express; 2023 Jul; 31(15):24203-24212. PubMed ID: 37475253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waveguides in single-crystal lithium niobate thin film by proton exchange.
    Cai L; Han SL; Hu H
    Opt Express; 2015 Jan; 23(2):1240-8. PubMed ID: 25835882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform.
    Ahmed ANR; Shi S; Mercante AJ; Prather DW
    Opt Express; 2019 Oct; 27(21):30741-30751. PubMed ID: 31684317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact thin film lithium niobate folded intensity modulator using a waveguide crossing.
    Nelan S; Mercante A; Hurley C; Shi S; Yao P; Shopp B; Prather DW
    Opt Express; 2022 Mar; 30(6):9193-9207. PubMed ID: 35299354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folded Heterogeneous Silicon and Lithium Niobate Mach-Zehnder Modulators with Low Drive Voltage.
    Sun S; Xu M; He M; Gao S; Zhang X; Zhou L; Liu L; Yu S; Cai X
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.