BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31641197)

  • 1. Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography.
    Veenstra C; Kruitwagen S; Groener D; Petersen W; Steenbergen W; Bosschaart N
    Sci Rep; 2019 Oct; 9(1):15115. PubMed ID: 31641197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical density based quantification of total haemoglobin concentrations with spectroscopic optical coherence tomography.
    Cuartas-Vélez C; Veenstra C; Kruitwagen S; Petersen W; Bosschaart N
    Sci Rep; 2021 Apr; 11(1):8680. PubMed ID: 33883617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography.
    Veenstra C; Petersen W; Vellekoop IM; Steenbergen W; Bosschaart N
    Biomed Opt Express; 2018 Aug; 9(8):3581-3589. PubMed ID: 30338141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography.
    Faber DJ; Mik EG; Aalders MC; van Leeuwen TG
    Opt Lett; 2005 May; 30(9):1015-7. PubMed ID: 15906988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non-scattering phantoms.
    Hermann B; Hofer B; Meier C; Drexler W
    Opt Express; 2009 Dec; 17(26):24162-74. PubMed ID: 20052127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography.
    Chong SP; Merkle CW; Leahy C; Radhakrishnan H; Srinivasan VJ
    Biomed Opt Express; 2015 Apr; 6(4):1429-50. PubMed ID: 25909026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free detection of brain tumors in a 9L gliosarcoma rat model using stimulated Raman scattering-spectroscopic optical coherence tomography.
    Soltani S; Guang Z; Zhang Z; Olson J; Robles F
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34263579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography.
    Yi J; Li X
    Opt Lett; 2010 Jun; 35(12):2094-6. PubMed ID: 20548397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography.
    Xu C; Kamalabadi F; Boppart SA
    Appl Opt; 2005 Apr; 44(10):1813-22. PubMed ID: 15813517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography.
    Graf RN; Wax A
    J Opt Soc Am A Opt Image Sci Vis; 2007 Aug; 24(8):2186-95. PubMed ID: 17621322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear phase dispersion spectroscopy.
    Robles FE; Satterwhite LL; Wax A
    Opt Lett; 2011 Dec; 36(23):4665-7. PubMed ID: 22139277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic Doppler analysis for visible-light optical coherence tomography.
    Shu X; Liu W; Duan L; Zhang HF
    J Biomed Opt; 2017 Oct; 22(12):1-8. PubMed ID: 29043714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography.
    Hermann B; Bizheva K; Unterhuber A; Povazay B; Sattmann H; Schmetterer L; Fercher A; Drexler W
    Opt Express; 2004 Apr; 12(8):1677-88. PubMed ID: 19474994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery.
    Park YH; Lee JH; Song HG; Byon HJ; Kim HS; Kim JT
    Anesth Analg; 2012 Dec; 115(6):1302-7. PubMed ID: 23144437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral optical coherence tomography: a novel technique for cornea imaging.
    Kaluzny BJ; Kałuzny JJ; Szkulmowska A; Gorczyńska I; Szkulmowski M; Bajraszewski T; Wojtkowski M; Targowski P
    Cornea; 2006 Sep; 25(8):960-5. PubMed ID: 17102675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of optic disc measurement by Copernicus optical coherence tomography and Heidelberg retinal tomography.
    Yang QS; Yu YJ; Li SN; Liu J; Hao YJ
    Chin Med J (Engl); 2012 Aug; 125(16):2858-61. PubMed ID: 22932080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tri-band spectroscopic optical coherence tomography based on optical parametric amplification for lipid and vessel visualization.
    Yu L; Kang J; Jinata C; Wang X; Wei X; Chan KT; Lee NP; Wong KK
    J Biomed Opt; 2015; 20(12):126006. PubMed ID: 26677071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobin assay in anemic patients with a photothermal spectral-domain optical coherence reflectometric sensor.
    Kim H; Song S; Yim J; Kim HO; Joo C
    Clin Chim Acta; 2015 Jan; 439():71-6. PubMed ID: 25312865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous noninvasive hemoglobin monitoring during complex spine surgery.
    Berkow L; Rotolo S; Mirski E
    Anesth Analg; 2011 Dec; 113(6):1396-402. PubMed ID: 21965372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography.
    Bosschaart N; van Leeuwen TG; Aalders MC; Faber DJ
    Biomed Opt Express; 2013; 4(11):2570-84. PubMed ID: 24298417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.