BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31641197)

  • 21. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography.
    Bosschaart N; van Leeuwen TG; Aalders MC; Faber DJ
    Biomed Opt Express; 2013; 4(11):2570-84. PubMed ID: 24298417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of noninvasive and continuous hemoglobin measurement by pulse co-oximetry during preoperative phlebotomy.
    Dewhirst E; Naguib A; Winch P; Rice J; Galantowicz M; McConnell P; Tobias JD
    J Intensive Care Med; 2014; 29(4):238-42. PubMed ID: 23753242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin.
    Hirayama H; Nakamura S
    J Biomed Opt; 2015 Jul; 20(7):076014. PubMed ID: 26222961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coherently broadened, high-repetition-rate laser for stimulated Raman scattering-spectroscopic optical coherence tomography.
    Robles FE; Linnenbank H; Mörz F; Ledwig P; Steinle T; Giessen H
    Opt Lett; 2019 Jan; 44(2):291-294. PubMed ID: 30644883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence and compensation of autocorrelation terms in depth-resolved spectroscopic Fourier-domain optical coherence tomography.
    Steiner P; Meier C; Koch VM
    Appl Opt; 2010 Dec; 49(36):6917-23. PubMed ID: 21173826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography.
    Lu CW; Lee CK; Tsai MT; Wang YM; Yang CC
    Opt Lett; 2008 Mar; 33(5):416-8. PubMed ID: 18311277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography.
    Szkulmowski M; Szkulmowska A; Bajraszewski T; Kowalczyk A; Wojtkowski M
    Opt Express; 2008 Apr; 16(9):6008-25. PubMed ID: 18545302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro assessment of effects of hyperglycemia on the optical properties of blood during coagulation using optical coherence tomography.
    Liu Y; Wu G; Wei H; Guo Z; Yang H; He Y; Xie S; Zhang Y; Zhu Z
    Lasers Med Sci; 2015 Jan; 30(1):413-20. PubMed ID: 25380667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography.
    Yi J; Gong J; Li X
    Opt Express; 2009 Jul; 17(15):13157-67. PubMed ID: 19654721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical coherence tomography of basal cell carcinoma: density and signal attenuation.
    Yücel D; Themstrup L; Manfredi M; Jemec GB
    Skin Res Technol; 2016 Nov; 22(4):497-504. PubMed ID: 27264340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of near-infrared fluorescent dyes in depth resolved spectroscopic optical coherence tomography.
    Xu C; Ye J; Marks DL; Boppart SA
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1214-7. PubMed ID: 17271906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral optical coherence tomography: a new imaging technique in contact lens practice.
    Kałuzny BJ; Kaluzny JJ; Szkulmowska A; Gorczyńska I; Szkulmowski M; Bajraszewski T; Targowski P; Kowalczyk A
    Ophthalmic Physiol Opt; 2006 Mar; 26(2):127-32. PubMed ID: 16460312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring light scattering and absorption in corals with Inverse Spectroscopic Optical Coherence Tomography (ISOCT): a new tool for non-invasive monitoring.
    Spicer GLC; Eid A; Wangpraseurt D; Swain TD; Winkelmann JA; Yi J; Kühl M; Marcelino LA; Backman V
    Sci Rep; 2019 Oct; 9(1):14148. PubMed ID: 31578438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-transfusion stability of haemoglobin mass.
    Pottgiesser T; Specker W; Umhau M; Roecker K; Schumacher YO
    Vox Sang; 2009 Feb; 96(2):119-27. PubMed ID: 19152604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range.
    Cimalla P; Walther J; Mittasch M; Koch E
    J Biomed Opt; 2011 Nov; 16(11):116020. PubMed ID: 22112125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noninvasive measurement of total hemoglobin and hemoglobin derivatives using multiwavelength pulse spectrophotometry -In vitro study with a mock circulatory system.
    Suzaki H; Kobayashi N; Nagaoka T; Iwasaki K; Umezu M; Takeda S; Togawa T
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():799-802. PubMed ID: 17946423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of haemoglobin measurement by several methods - blood gas analyser, capillary and venous HemoCue
    Wittenmeier E; Lesmeister L; Pirlich N; Dette F; Schmidtmann I; Mildenberger E
    Anaesthesia; 2019 Feb; 74(2):197-202. PubMed ID: 30427065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data.
    Smith GT; Dwork N; O'Connor D; Sikora U; Lurie KL; Pauly JM; Ellerbee AK
    IEEE Trans Med Imaging; 2015 Dec; 34(12):2592-602. PubMed ID: 26126286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple scattering effects in Doppler optical coherence tomography of flowing blood.
    Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG
    Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Qian R; McNabb RP; Zhou KC; Mousa HM; Saban DR; Perez VL; Kuo AN; Izatt JA
    Biomed Opt Express; 2021 Apr; 12(4):2134-2148. PubMed ID: 33996220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.