BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31641279)

  • 1. Syntrophic growth of alkaliphilic anaerobes controlled by ferric and ferrous minerals transformation coupled to acetogenesis.
    Zavarzina DG; Gavrilov SN; Chistyakova NI; Antonova AV; Gracheva MA; Merkel AY; Perevalova AA; Chernov MS; Zhilina TN; Bychkov AY; Bonch-Osmolovskaya EA
    ISME J; 2020 Feb; 14(2):425-436. PubMed ID: 31641279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ["Candidatus contubernalis alkalaceticum," an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum].
    Zhilina TN; Zavarzina DG; Kolganova TV; Turova TP; Zavarzin GA
    Mikrobiologiia; 2005; 74(6):800-9. PubMed ID: 16400991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium.
    Zavarzina DG; Kochetkova TV; Chistyakova NI; Gracheva MA; Antonova AV; Merkel AY; Perevalova AA; Chernov MS; Koksharov YA; Bonch-Osmolovskaya EA; Gavrilov SN; Bychkov AY
    Sci Rep; 2020 Dec; 10(1):21661. PubMed ID: 33303863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reduction of the synthesized ferrihydrite by a binary anaerobic culture of Anaerobacillus alkalilacustris and Geoalkalibacter ferrihydriticus upon growth on mannitol].
    Zavarzina DG; Kevbrin VV; Zhilina TN; Chistiakova NI; Shapkin AV; Zavarzin GA
    Mikrobiologiia; 2011; 80(6):731-46. PubMed ID: 22393758
    [No Abstract]   [Full Text] [Related]  

  • 5. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation.
    Zhuang L; Tang J; Wang Y; Hu M; Zhou S
    J Hazard Mater; 2015 Aug; 293():37-45. PubMed ID: 25827267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria.
    Lloyd JR; Sole VA; Van Praagh CV; Lovley DR
    Appl Environ Microbiol; 2000 Sep; 66(9):3743-9. PubMed ID: 10966385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influencing mechanisms of siderite and magnetite, on naphthalene biodegradation: Insights from degradability and mineral surface structure.
    Shen X; Dong W; Wan Y; Feng K; Liu Y; Wei Y
    J Environ Manage; 2021 Dec; 299():113648. PubMed ID: 34479148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary Mineralization of Ferrihydrite Affects Microbial Methanogenesis in Geobacter-Methanosarcina Cocultures.
    Tang J; Zhuang L; Ma J; Tang Z; Yu Z; Zhou S
    Appl Environ Microbiol; 2016 Oct; 82(19):5869-77. PubMed ID: 27451453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells.
    Badalamenti JP; Krajmalnik-Brown R; Torres CI
    mBio; 2013 Apr; 4(3):e00144-13. PubMed ID: 23631915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated anaerobic microbial redox cycling of iron.
    Coby AJ; Picardal F; Shelobolina E; Xu H; Roden EE
    Appl Environ Microbiol; 2011 Sep; 77(17):6036-42. PubMed ID: 21742920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging redox activity and Fe(II) at the microbe-mineral interface during Fe(III) reduction.
    Downie HF; Standerwick JP; Burgess L; Natrajan LS; Lloyd JR
    Res Microbiol; 2018 Dec; 169(10):582-589. PubMed ID: 29886258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.
    Glasauer S; Langley S; Beveridge TJ
    Science; 2002 Jan; 295(5552):117-9. PubMed ID: 11778045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1: Roles of mineral catalysis and cell encrustation.
    Cheng K; Li H; Yuan X; Yin Y; Chen D; Wang Y; Li X; Chen G; Li F; Peng C; Wu Y; Liu T
    Geobiology; 2022 Nov; 20(6):810-822. PubMed ID: 35829697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments.
    Zheng S; Wang B; Liu F; Wang O
    J Microbiol; 2017 Nov; 55(11):862-870. PubMed ID: 29076069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenic magnetite formation through anaerobic biooxidation of Fe(II).
    Chaudhuri SK; Lack JG; Coates JD
    Appl Environ Microbiol; 2001 Jun; 67(6):2844-8. PubMed ID: 11375205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral Detection of Nanophase Iron Minerals Produced by Fe(III)-Reducing Hyperthermophilic Crenarchaea.
    Kashyap S; Sklute EC; Wang P; Tague TJ; Dyar MD; Holden JF
    Astrobiology; 2023 Jan; 23(1):43-59. PubMed ID: 36070586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.