These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31641526)

  • 1. Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi.
    Kwon MJ; Schütze T; Spohner S; Haefner S; Meyer V
    Fungal Biol Biotechnol; 2019; 6():15. PubMed ID: 31641526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Champreda V; Eurwilaichitr L; Chantasingh D; Pootanakit K
    J Biotechnol; 2022 Aug; 355():53-64. PubMed ID: 35788357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus
    Liu Q; Zhang Y; Li F; Li J; Sun W; Tian C
    Biotechnol Biofuels; 2019; 12():293. PubMed ID: 31890021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 5. Development of microtiter plate scale CRISPR/Cas9 transformation method for
    Kuivanen J; Korja V; Holmström S; Richard P
    Fungal Biol Biotechnol; 2019; 6():3. PubMed ID: 30923622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cpf1 enables fast and efficient genome editing in Aspergilli.
    Vanegas KG; Jarczynska ZD; Strucko T; Mortensen UH
    Fungal Biol Biotechnol; 2019; 6():6. PubMed ID: 31061713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae.
    Chen T; Chen Z; Zhang H; Li Y; Yao L; Zeng B; Zhang Z
    Folia Microbiol (Praha); 2024 Apr; 69(2):373-382. PubMed ID: 37490214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome Editing in Ferret Airway Epithelia Mediated by CRISPR/Nucleases Delivered with Amphiphilic Shuttle Peptides.
    Luo M; Ma J; Cheng X; Wu S; Bartels DJ; Guay D; Engelhardt JF; Liu X
    Hum Gene Ther; 2023 Aug; 34(15-16):705-718. PubMed ID: 37335046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum.
    Kim H; Choi J; Won KH
    BMC Plant Biol; 2020 Oct; 20(1):449. PubMed ID: 33004008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1.
    Jiménez A; Hoff B; Revuelta JL
    N Biotechnol; 2020 Jul; 57():29-33. PubMed ID: 32194155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 14. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi.
    Wang Q; Coleman JJ
    Comput Struct Biotechnol J; 2019; 17():761-769. PubMed ID: 31312414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal
    Liu Q; Gao R; Li J; Lin L; Zhao J; Sun W; Tian C
    Biotechnol Biofuels; 2017; 10():1. PubMed ID: 28053662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of CRISPR-Cas9/Cas12a Ribonucleoprotein Complexes for Genome Editing Efficiency in the Rice Phytoene Desaturase (OsPDS) Gene.
    Banakar R; Schubert M; Collingwood M; Vakulskas C; Eggenberger AL; Wang K
    Rice (N Y); 2020 Jan; 13(1):4. PubMed ID: 31965382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.