BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31641620)

  • 1. Biocompatible synthesis of reduced graphene oxide from
    Lingaraju K; Raja Naika H; Nagaraju G; Nagabhushana H
    Biotechnol Rep (Amst); 2019 Dec; 24():e00376. PubMed ID: 31641620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231).
    Gurunathan S; Han J; Park JH; Kim JH
    Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.
    Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH
    Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent.
    Choi YJ; Kim E; Han J; Kim JH; Gurunathan S
    Molecules; 2016 Mar; 21(3):375. PubMed ID: 26999102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green chemistry approach for the synthesis of biocompatible graphene.
    Gurunathan S; Han JW; Kim JH
    Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Pot Synthesis of Ruthenium-Based Nanocatalyst Using Reduced Graphene Oxide as Matrix for Electrochemical Synthesis of Ammonia.
    Sun W; Sahin NE; Sun D; Wu X; Munoz C; Thakare J; Aulich T; Zhang J; Hou X; Oncel N; Pierce D; Zhao JX
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1115-1128. PubMed ID: 36575897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Int J Nanomedicine; 2013; 8():1015-27. PubMed ID: 23687445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An environmentally friendly approach to the reduction of graphene oxide by Escherichia fergusoni.
    Gurunathan S; Han JW; Eppakayala V; Jeyaraj M; Kim JH
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2091-8. PubMed ID: 23755651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile one-pot synthesis of folic acid-modified graphene to improve the performance of graphene-based sensing strategy.
    Zhan L; Zhang Y; Zeng QL; Liu ZD; Huang CZ
    J Colloid Interface Sci; 2014 Jul; 426():293-9. PubMed ID: 24863796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora persica L. Root (Miswak) Extract.
    Khan M; Al-Marri AH; Khan M; Shaik MR; Mohri N; Adil SF; Kuniyil M; Alkhathlan HZ; Al-Warthan A; Tremel W; Tahir MN; Siddiqui MR
    Nanoscale Res Lett; 2015 Dec; 10(1):987. PubMed ID: 26138452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of reduced graphene oxide using
    Punniyakotti P; Aruliah R; Angaiah S
    3 Biotech; 2021 Apr; 11(4):157. PubMed ID: 33758735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of reduced graphene oxide and its in-vitro cytotoxicity against cervical cancer (HeLa) cell lines.
    Luo L; Xu L; Zhao H
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():198-202. PubMed ID: 28575975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Colloids Surf B Biointerfaces; 2013 May; 105():58-66. PubMed ID: 23352948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green reduction of graphene oxide using Bacillus sphaericus.
    Xu Q; Lin X; Gan L; Owens G; Chen Z
    J Colloid Interface Sci; 2022 Jan; 605():881-887. PubMed ID: 34371431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications.
    Kadiyala NK; Mandal BK; Ranjan S; Dasgupta N
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():191-205. PubMed ID: 30274051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytogenic Synthesis of Nickel Oxide Nanoparticles (NiO) Using Fresh Leaves Extract of
    Iqbal J; Abbasi BA; Ahmad R; Mahmoodi M; Munir A; Zahra SA; Shahbaz A; Shaukat M; Kanwal S; Uddin S; Mahmood T; Capasso R
    Biomedicines; 2020 May; 8(5):. PubMed ID: 32408532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide reduced and modified by environmentally friendly glycylglycine and its excellent catalytic performance.
    Zhang C; Chen M; Xu X; Zhang L; Zhang L; Xia F; Li X; Liu Y; Hu W; Gao J
    Nanotechnology; 2014 Apr; 25(13):135707. PubMed ID: 24598357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humanin: a novel functional molecule for the green synthesis of graphene.
    Gurunathan S; Han J; Kim JH
    Colloids Surf B Biointerfaces; 2013 Nov; 111():376-83. PubMed ID: 23850746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water.
    Atarod M; Nasrollahzadeh M; Mohammad Sajadi S
    J Colloid Interface Sci; 2016 Jan; 462():272-9. PubMed ID: 26469545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green Synthesis of Chromium Oxide Nanoparticles for Antibacterial, Antioxidant Anticancer, and Biocompatibility Activities.
    Khan SA; Shahid S; Hanif S; Almoallim HS; Alharbi SA; Sellami H
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.