These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31642127)

  • 1. A computational method for design of connected catalytic networks in proteins.
    Weitzner BD; Kipnis Y; Daniel AG; Hilvert D; Baker D
    Protein Sci; 2019 Dec; 28(12):2036-2041. PubMed ID: 31642127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of designed and randomly generated catalysts for simple chemical reactions.
    Kipnis Y; Baker D
    Protein Sci; 2012 Sep; 21(9):1388-95. PubMed ID: 22811380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational design of novel enzymes without cofactors.
    Smith MD; Zanghellini A; Grabs-Röthlisberger D
    Methods Mol Biol; 2014; 1216():197-210. PubMed ID: 25213417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational redesign of metalloenzymes for catalyzing new reactions.
    Greisen P; Khare SD
    Methods Mol Biol; 2014; 1216():265-73. PubMed ID: 25213421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole.
    Sigala PA; Kraut DA; Caaveiro JM; Pybus B; Ruben EA; Ringe D; Petsko GA; Herschlag D
    J Am Chem Soc; 2008 Oct; 130(41):13696-708. PubMed ID: 18808119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.
    Huang X; Xue J; Lin M; Zhu Y
    PLoS One; 2016; 11(5):e0156559. PubMed ID: 27243223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition and catalytic mechanism of HIV-1 aspartic protease.
    Silva AM; Cachau RE; Sham HL; Erickson JW
    J Mol Biol; 1996 Jan; 255(2):321-46. PubMed ID: 8551523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme chymotrypsin.
    Stewart JJP
    J Mol Model; 2017 May; 23(5):154. PubMed ID: 28378242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo computational design of retro-aldol enzymes.
    Jiang L; Althoff EA; Clemente FR; Doyle L; Röthlisberger D; Zanghellini A; Gallaher JL; Betker JL; Tanaka F; Barbas CF; Hilvert D; Houk KN; Stoddard BL; Baker D
    Science; 2008 Mar; 319(5868):1387-91. PubMed ID: 18323453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulations of the catalytic mechanism of wild-type and mutant β-phosphoglucomutase.
    Barrozo A; Liao Q; Esguerra M; Marloie G; Florián J; Williams NH; Kamerlin SCL
    Org Biomol Chem; 2018 Mar; 16(12):2060-2073. PubMed ID: 29508879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state.
    Wheatley RW; Huber RE
    Biochem Cell Biol; 2015 Dec; 93(6):531-40. PubMed ID: 26291713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable design of orthogonal protein heterodimers.
    Chen Z; Boyken SE; Jia M; Busch F; Flores-Solis D; Bick MJ; Lu P; VanAernum ZL; Sahasrabuddhe A; Langan RA; Bermeo S; Brunette TJ; Mulligan VK; Carter LP; DiMaio F; Sgourakis NG; Wysocki VH; Baker D
    Nature; 2019 Jan; 565(7737):106-111. PubMed ID: 30568301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of active and inactive catalytic triads: A template based approach.
    Gupta V; Prakash NA; Lakshmi V; Boopathy R; Jeyakanthan J; Velmurugan D; Sekar K
    Int J Biol Macromol; 2010 Apr; 46(3):317-23. PubMed ID: 20100510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic roles of substrate-binding residues in coenzyme B12-dependent ethanolamine ammonia-lyase.
    Mori K; Oiwa T; Kawaguchi S; Kondo K; Takahashi Y; Toraya T
    Biochemistry; 2014 Apr; 53(16):2661-71. PubMed ID: 24735254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual screening of mandelate racemase mutants with enhanced activity based on binding energy in the transition state.
    Gu J; Liu M; Guo F; Xie W; Lu W; Ye L; Chen Z; Yuan S; Yu H
    Enzyme Microb Technol; 2014 Feb; 55():121-7. PubMed ID: 24411454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.