BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31642404)

  • 1. Glutamate receptor subtypes differentially contribute to optogenetically activated swimming in spinally transected zebrafish larvae.
    Wahlstrom-Helgren S; Montgomery JE; Vanpelt KT; Biltz SL; Peck JH; Masino MA
    J Neurophysiol; 2019 Dec; 122(6):2414-2426. PubMed ID: 31642404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive optogenetic stimulation of glutamatergic neurons: An alternative to NMDA treatment for generating locomotor activity in spinalized zebrafish larvae.
    Montgomery JE; Wahlstrom-Helgren S; Vanpelt KT; Masino MA
    Physiol Rep; 2021 Mar; 9(6):e14774. PubMed ID: 33769694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization.
    Wiggin TD; Anderson TM; Eian J; Peck JH; Masino MA
    J Neurophysiol; 2012 Aug; 108(3):925-34. PubMed ID: 22572943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of serotonin on fictive locomotion coordinated by a neural network deprived of NMDA receptor-mediated cellular properties.
    Schotland JL; Grillner S
    Exp Brain Res; 1993; 93(3):391-8. PubMed ID: 8100198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey.
    Wallén P; Ekeberg O; Lansner A; Brodin L; Tråvén H; Grillner S
    J Neurophysiol; 1992 Dec; 68(6):1939-50. PubMed ID: 1283406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of miniature glutamatergic EPSCs in neurons of the locomotor regions of the developing zebrafish.
    Ali DW; Buss RR; Drapeau P
    J Neurophysiol; 2000 Jan; 83(1):181-91. PubMed ID: 10634865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocannabinoid signaling in the spinal locomotor circuitry.
    El Manira A; Kyriakatos A; Nanou E; Mahmood R
    Brain Res Rev; 2008 Jan; 57(1):29-36. PubMed ID: 17719648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic activation of excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in larval zebrafish.
    Ljunggren EE; Haupt S; Ausborn J; Ampatzis K; El Manira A
    J Neurosci; 2014 Jan; 34(1):134-9. PubMed ID: 24381274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABAA or glycine receptors.
    Cheng G; Kendig JJ
    Anesthesiology; 2000 Oct; 93(4):1075-84. PubMed ID: 11020764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for slow NMDA receptor-mediated, intrinsic neuronal oscillations in the control of fast fictive swimming in Xenopus laevis larvae.
    Reith CA; Sillar KT
    Eur J Neurosci; 1998 Apr; 10(4):1329-40. PubMed ID: 9749787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of a spinal locomotor network by metabotropic glutamate receptors.
    Chapman RJ; Sillar KT
    Eur J Neurosci; 2007 Oct; 26(8):2257-68. PubMed ID: 17894819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling spinal locomotor circuits for movements in developing zebrafish.
    Roussel Y; Gaudreau SF; Kacer ER; Sengupta M; Bui TV
    Elife; 2021 Sep; 10():. PubMed ID: 34473059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rostrocaudal distribution of 5-HT innervation in the lamprey spinal cord and differential effects of 5-HT on fictive locomotion.
    Zhang W; Pombal MA; el Manira A; Grillner S
    J Comp Neurol; 1996 Oct; 374(2):278-90. PubMed ID: 8906499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-D-aspartate receptors.
    Christoffersen CL; Meltzer LT
    Neuroscience; 1995 Jul; 67(2):373-81. PubMed ID: 7545793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional respiratory rhythm generating networks in neonatal mice lacking NMDAR1 gene.
    Funk GD; Johnson SM; Smith JC; Dong XW; Lai J; Feldman JL
    J Neurophysiol; 1997 Sep; 78(3):1414-20. PubMed ID: 9310432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous NMDA-receptor activation regulates glutamate release in cultured spinal neurons.
    Robert A; Black JA; Waxman SG
    J Neurophysiol; 1998 Jul; 80(1):196-208. PubMed ID: 9658041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Methyl-D-aspartate (NMDA), kainate and quisqualate receptors and the generation of fictive locomotion in the lamprey spinal cord.
    Brodin L; Grillner S; Rovainen CM
    Brain Res; 1985 Jan; 325(1-2):302-6. PubMed ID: 2858251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.