These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31642660)

  • 1. Enhancing Oxygen Vacancies by Introducing Na
    Hong W; Zhu T; Sun Y; Wang H; Li X; Shen F
    Environ Sci Technol; 2019 Nov; 53(22):13332-13343. PubMed ID: 31642660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu Species-Modified OMS-2 Materials for Enhancing Ozone Catalytic Decomposition under Humid Conditions.
    Chen C; Xie J; Chen X; Zhang W; Chen J; Jia A
    ACS Omega; 2023 Jun; 8(22):19632-19644. PubMed ID: 37305299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance ozone decomposition over MnAl-based mixed oxide catalysts derived from layered double hydroxides.
    Shao M; Hong W; Zhu T; Jiang X; Sun Y; Hou S
    RSC Adv; 2022 Sep; 12(41):26834-26845. PubMed ID: 36320860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the fill percentage in the hydrothermal synthesis process to increase catalyst performance for ozone decomposition.
    Yang L; Ma J; Li X; He G; Zhang C; He H
    J Environ Sci (China); 2020 Jan; 87():60-70. PubMed ID: 31791518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the K
    Zhu G; Zhu J; Li W; Yao W; Zong R; Zhu Y; Zhang Q
    Environ Sci Technol; 2018 Aug; 52(15):8684-8692. PubMed ID: 29968461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To promote catalytic ozonation of toluene by tuning Brönsted acid sites via introducing alkali metals into the OMS-2-SO
    Hong W; Liu Y; Jiang X; An C; Zhu T; Sun Y; Wang H; Shen F; Li X
    J Hazard Mater; 2023 Apr; 448():130900. PubMed ID: 36731324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient ozone decomposition in high humidity environments using novel iron-doped OMS-2-loaded activated carbon material.
    Qing Q; Zhu S; Jin H; Mei T; Liu W; Zhao S
    Environ Sci Pollut Res Int; 2024 May; 31(24):35678-35687. PubMed ID: 38740682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous poorly crystalline α-Fe
    Liang X; Wang L; Wen T; Liu H; Zhang J; Liu Z; Zhu C; Long C
    Sci Total Environ; 2022 Jan; 804():150161. PubMed ID: 34517313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Chemical State of Silver on Ag-Mn Catalysts to Enhance the Ozone Decomposition Performance.
    Li X; Ma J; He H
    Environ Sci Technol; 2020 Sep; 54(18):11566-11575. PubMed ID: 32786590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel γ-like MnO
    Xu Z; Yang W; Si W; Chen J; Peng Y; Li J
    J Hazard Mater; 2021 Oct; 420():126641. PubMed ID: 34329114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detrimental role of residual surface acid ions on ozone decomposition over Ce-modified γ-MnO
    Li X; Ma J; Zhang C; Zhang R; He H
    J Environ Sci (China); 2020 May; 91():43-53. PubMed ID: 32172981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoting the Catalytic Ozonation of Toluene by Introducing SO
    Hong W; Liu Y; Zhu T; Wang H; Sun Y; Shen F; Li X
    Environ Sci Technol; 2022 Nov; 56(22):15695-15704. PubMed ID: 36259958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The remarkable effect of alkali earth metal ion on the catalytic activity of OMS-2 for benzene oxidation.
    Ni C; Hou J; Li L; Li Y; Wang M; Yin H; Tan W
    Chemosphere; 2020 Jul; 250():126211. PubMed ID: 32113097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation.
    Hou J; Li Y; Mao M; Zhao X; Yue Y
    Nanoscale; 2014 Dec; 6(24):15048-58. PubMed ID: 25366705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A superior catalyst for ozone decomposition: NiFe layered double hydroxide.
    Wang Z; Chen Y; Li X; Ma J; He G; He H
    J Environ Sci (China); 2023 Dec; 134():2-10. PubMed ID: 37673529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting the Dispersity of Metallic Ag Nanoparticles and Ozone Decomposition Performance of Ag-Mn Catalysts via Manganese Vacancy-Dependent Metal-Support Interactions.
    Li X; He G; Ma J; Shao X; Chen Y; He H
    Environ Sci Technol; 2021 Dec; 55(23):16143-16152. PubMed ID: 34751029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of calcination temperature on the performance of Pd-Mn/SiO2-Al2O3 catalysts for ozone decomposition.
    Yu Q; Pan H; Zhao M; Liu Z; Wang J; Chen Y; Gong M
    J Hazard Mater; 2009 Dec; 172(2-3):631-4. PubMed ID: 19665296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The post plasma-catalytic decomposition of toluene over K-modified OMS-2 catalysts at ambient temperature: Effect of K
    Jiang N; Li X; Kong X; Zhao Y; Li J; Shang K; Lu N; Wu Y
    J Colloid Interface Sci; 2021 Sep; 598():519-529. PubMed ID: 33951548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Vacancies Induced by Transition Metal Doping in γ-MnO
    Li X; Ma J; Yang L; He G; Zhang C; Zhang R; He H
    Environ Sci Technol; 2018 Nov; 52(21):12685-12696. PubMed ID: 30346750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the influence of water molecules on selective catalytic ozonation of gaseous ammonia into nitrogen on cryptomelane-type manganese oxide using in-situ DRIFTS.
    Wang L; Gao L; Li A; Wen T; Zhang J; Long C
    Chemosphere; 2023 Feb; 313():137521. PubMed ID: 36513199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.