These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 31642851)
1. Double network hydrogels based on semi-rigid polyelectrolyte physical networks. Takahashi R; Ikai T; Kurokawa T; King DR; Gong JP J Mater Chem B; 2019 Oct; 7(41):6347-6354. PubMed ID: 31642851 [TBL] [Abstract][Full Text] [Related]
2. Polyelectrolyte complexation via viscoelastic phase separation results in tough and self-recovering porous hydrogels. Murakawa K; King DR; Sun T; Guo H; Kurokawa T; Gong JP J Mater Chem B; 2019 Sep; 7(35):5296-5305. PubMed ID: 31432060 [TBL] [Abstract][Full Text] [Related]
3. Double-network hydrogel and its potential biomedical application: A review. Nonoyama T; Gong JP Proc Inst Mech Eng H; 2015 Dec; 229(12):853-63. PubMed ID: 26614799 [TBL] [Abstract][Full Text] [Related]
4. Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels. Yin H; King DR; Sun TL; Saruwatari Y; Nakajima T; Kurokawa T; Gong JP ACS Appl Mater Interfaces; 2020 Nov; 12(44):50068-50076. PubMed ID: 33085900 [TBL] [Abstract][Full Text] [Related]
5. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers. Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622 [TBL] [Abstract][Full Text] [Related]
6. Polyelectrolyte and Antipolyelectrolyte Effects for Dual Salt-Responsive Interpenetrating Network Hydrogels. Huang KT; Ishihara K; Huang CJ Biomacromolecules; 2019 Sep; 20(9):3524-3534. PubMed ID: 31381318 [TBL] [Abstract][Full Text] [Related]
7. How can multi-bond network hydrogels dissipate energy more effectively: an investigation on the relationship between network structure and properties. Xu H; Shi FK; Liu XY; Zhong M; Xie XM Soft Matter; 2020 May; 16(18):4407-4413. PubMed ID: 32323693 [TBL] [Abstract][Full Text] [Related]
8. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application. Deng Y; Huang M; Sun D; Hou Y; Li Y; Dong T; Wang X; Zhang L; Yang W ACS Appl Mater Interfaces; 2018 Oct; 10(43):37544-37554. PubMed ID: 30296052 [TBL] [Abstract][Full Text] [Related]
9. Lignin-based hydrogels: A review of preparation, properties, and application. Meng Y; Lu J; Cheng Y; Li Q; Wang H Int J Biol Macromol; 2019 Aug; 135():1006-1019. PubMed ID: 31154040 [TBL] [Abstract][Full Text] [Related]
10. Dynamic behavior of tough polyelectrolyte complex hydrogels from chitosan and sodium hyaluronate. Liu Y; Hu J; Xiao Z; Jin X; Jiang C; Yin P; Tang L; Sun T Carbohydr Polym; 2022 Jul; 288():119403. PubMed ID: 35450655 [TBL] [Abstract][Full Text] [Related]
11. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application. Wu X; Sun H; Qin Z; Che P; Yi X; Yu Q; Zhang H; Sun X; Yao F; Li J Int J Biol Macromol; 2020 Apr; 149():707-716. PubMed ID: 32014477 [TBL] [Abstract][Full Text] [Related]
12. Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide). Tavsanli B; Can V; Okay O Soft Matter; 2015 Nov; 11(43):8517-24. PubMed ID: 26376837 [TBL] [Abstract][Full Text] [Related]
13. Modulation of Properties through Covalent Bond Induced Formation of Strong Ion Pairing between Polyelectrolytes in Injectable Conetwork Hydrogels. Kumar A; Nutan B; Jewrajka SK ACS Appl Bio Mater; 2021 Apr; 4(4):3374-3387. PubMed ID: 35014422 [TBL] [Abstract][Full Text] [Related]
14. Chitosan derivative-based double network hydrogels with high strength, high fracture toughness and tunable mechanics. Gan S; Xu B; Zhang X; Zhao J; Rong J Int J Biol Macromol; 2019 Sep; 137():495-503. PubMed ID: 31276722 [TBL] [Abstract][Full Text] [Related]
15. Facile and cost-effective synthesis of glycogen-based conductive hydrogels with extremely flexible, excellent self-healing and tunable mechanical properties. Hussain I; Sayed SM; Fu G Int J Biol Macromol; 2018 Oct; 118(Pt B):1463-1469. PubMed ID: 29964106 [TBL] [Abstract][Full Text] [Related]
16. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications. Zhang Y; Heher P; Hilborn J; Redl H; Ossipov DA Acta Biomater; 2016 Jul; 38():23-32. PubMed ID: 27134013 [TBL] [Abstract][Full Text] [Related]
17. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties. Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401 [TBL] [Abstract][Full Text] [Related]
18. Hyaluronic acid auto-crosslinked polymer (ACP): Reaction monitoring, process investigation and hyaluronidase stability. Pluda S; Pavan M; Galesso D; Guarise C Carbohydr Res; 2016 Oct; 433():47-53. PubMed ID: 27442913 [TBL] [Abstract][Full Text] [Related]
19. Dual physically crosslinked hydrogels based on the synergistic effects of electrostatic and dipole-dipole interactions. Cao J; Cai Y; Yu L; Zhou J J Mater Chem B; 2019 Jan; 7(4):676-683. PubMed ID: 32254800 [TBL] [Abstract][Full Text] [Related]
20. High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers. Ye D; Chang C; Zhang L Biomacromolecules; 2019 May; 20(5):1989-1995. PubMed ID: 30908016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]