These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31642855)
1. Preventing fungal growth on heritage paper with antifungal and cellulase inhibiting magnesium oxide nanoparticles. Franco Castillo I; García Guillén E; M de la Fuente J; Silva F; Mitchell SG J Mater Chem B; 2019 Oct; 7(41):6412-6419. PubMed ID: 31642855 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, Photocatalytic, and Antifungal Properties of MgO, ZnO and Zn/Mg Oxide Nanoparticles for the Protection of Calcareous Stone Heritage. Sierra-Fernandez A; De la Rosa-García SC; Gomez-Villalba LS; Gómez-Cornelio S; Rabanal ME; Fort R; Quintana P ACS Appl Mater Interfaces; 2017 Jul; 9(29):24873-24886. PubMed ID: 28679041 [TBL] [Abstract][Full Text] [Related]
3. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Gadd GM; Fomina M; Pinzari F Microbiol Mol Biol Rev; 2024 Mar; 88(1):e0020022. PubMed ID: 38179930 [TBL] [Abstract][Full Text] [Related]
4. Dual Functions of a Hybrid Magnetic Magnesium Oxide Nanocomposite as a Fungicide and Plant Growth Promoter in Agriculture Applications. Wee JL; Chan YS; Law MC ACS Appl Bio Mater; 2023 Nov; 6(11):4972-4987. PubMed ID: 37910790 [TBL] [Abstract][Full Text] [Related]
5. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Hayat S; Muzammil S; Rasool MH; Nisar Z; Hussain SZ; Sabri AN; Jamil S Microbiol Immunol; 2018 Apr; 62(4):211-220. PubMed ID: 29405384 [TBL] [Abstract][Full Text] [Related]
6. Effect of garlic bulb extract on the growth and enzymatic activities of rhizosphere and rhizoplane fungi. Muhsin TM; Al-Zubaidy SR; Ali ET Mycopathologia; 2001; 152(3):143-6. PubMed ID: 11811642 [TBL] [Abstract][Full Text] [Related]
7. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. He Y; Ingudam S; Reed S; Gehring A; Strobaugh TP; Irwin P J Nanobiotechnology; 2016 Jun; 14(1):54. PubMed ID: 27349516 [TBL] [Abstract][Full Text] [Related]
8. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications. Hickey DJ; Muthusamy D; Webster TJ J Biomed Mater Res A; 2017 Nov; 105(11):3136-3147. PubMed ID: 28782240 [TBL] [Abstract][Full Text] [Related]
9. The effectiveness of magnesium oxide combined with tissue conditioners in inhibiting the growth of Candida albicans: an in vitro study. Kanathila H; Bhat AM; Krishna PD Indian J Dent Res; 2011; 22(4):613. PubMed ID: 22124069 [TBL] [Abstract][Full Text] [Related]
10. Zein based magnesium oxide nanoparticles: Assessment of antimicrobial activity for dental implications. Naguib GH; Hosny KM; Hassan AH; Al Hazmi F; Al Dharrab A; Alkhalidi HM; Hamed MT; Alnowaiser AM; Pashley DH Pak J Pharm Sci; 2018 Jan; 31(1(Suppl.)):245-250. PubMed ID: 29386150 [TBL] [Abstract][Full Text] [Related]
11. Fungal bioprospecting and antifungal treatment on a deteriorated Brazilian contemporary painting. Boniek D; Bonadio L; Santos de Abreu C; Dos Santos AFB; de Resende Stoianoff MA Lett Appl Microbiol; 2018 Oct; 67(4):337-342. PubMed ID: 30027573 [TBL] [Abstract][Full Text] [Related]
12. Reliability of antioxidant potential and in vivo compatibility with extremophilic actinobacterial-mediated magnesium oxide nanoparticle synthesis. Kandiah K; Jeevanantham T; Ramasamy B Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):862-872. PubMed ID: 30873893 [TBL] [Abstract][Full Text] [Related]
13. Once upon a Time, There Was a Piece of Wood: Present Knowledge and Future Perspectives in Fungal Deterioration of Wooden Cultural Heritage in Terrestrial Ecosystems and Diagnostic Tools. Isola D; Lee HJ; Chung YJ; Zucconi L; Pelosi C J Fungi (Basel); 2024 May; 10(5):. PubMed ID: 38786721 [TBL] [Abstract][Full Text] [Related]
14. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. Xu Y; Gao C; Li X; He Y; Zhou L; Pang G; Sun S J Ocul Pharmacol Ther; 2013 Mar; 29(2):270-4. PubMed ID: 23410063 [TBL] [Abstract][Full Text] [Related]
16. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Sardella D; Gatt R; Valdramidis VP Food Res Int; 2017 Nov; 101():274-279. PubMed ID: 28941694 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Parveen S; Wani AH; Shah MA; Devi HS; Bhat MY; Koka JA Microb Pathog; 2018 Feb; 115():287-292. PubMed ID: 29306005 [TBL] [Abstract][Full Text] [Related]
18. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi. Ibrahim IM; Ali IM; Dheeb BI; Abas QA; Asmeit Ramizy ; Eisa MH; Aljameel AI Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():665-669. PubMed ID: 28183658 [TBL] [Abstract][Full Text] [Related]
19. Functional Improvement in Rats' Pancreatic Islets Using Magnesium Oxide Nanoparticles Through Antiapoptotic and Antioxidant Pathways. Moeini-Nodeh S; Rahimifard M; Baeeri M; Abdollahi M Biol Trace Elem Res; 2017 Jan; 175(1):146-155. PubMed ID: 27234250 [TBL] [Abstract][Full Text] [Related]
20. In vitro anti-foot-and-mouth disease virus activity of magnesium oxide nanoparticles. Rafiei S; Rezatofighi SE; Ardakani MR; Madadgar O IET Nanobiotechnol; 2015 Oct; 9(5):247-51. PubMed ID: 26435276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]