These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31642855)
21. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Das B; Moumita S; Ghosh S; Khan MI; Indira D; Jayabalan R; Tripathy SK; Mishra A; Balasubramanian P Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():436-444. PubMed ID: 30033274 [TBL] [Abstract][Full Text] [Related]
22. Fungal community dynamics on limestone at the Chichén Itzá archaeological site in Mexico driven by protective treatments. De la Rosa-García S; Sierra-Fernández A; Solís CG; García NS; Quintana P; Gómez-Cornelio S; Fort R Sci Total Environ; 2024 Jan; 906():167563. PubMed ID: 37802337 [TBL] [Abstract][Full Text] [Related]
24. Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment. Jensen RH Dan Med J; 2016 Oct; 63(10):. PubMed ID: 27697142 [TBL] [Abstract][Full Text] [Related]
25. Antiprotozoal activity of magnesium oxide (MgO) nanoparticles against Cyclospora cayetanensis oocysts. Hussein EM; Ahmed SA; Mokhtar AB; Elzagawy SM; Yahi SH; Hussein AM; El-Tantawey F Parasitol Int; 2018 Dec; 67(6):666-674. PubMed ID: 29933042 [TBL] [Abstract][Full Text] [Related]
27. Enhanced pH stability, cell viability and reduced degradation rate of poly(L-lactide)-based composite in vitro: effect of modified magnesium oxide nanoparticles. Yang J; Cao X; Zhao Y; Wang L; Liu B; Jia J; Liang H; Chen M J Biomater Sci Polym Ed; 2017 Apr; 28(5):486-503. PubMed ID: 28054502 [TBL] [Abstract][Full Text] [Related]
28. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Li J; Sang H; Guo H; Popko JT; He L; White JC; Parkash Dhankher O; Jung G; Xing B Nanotechnology; 2017 Apr; 28(15):155101. PubMed ID: 28294107 [TBL] [Abstract][Full Text] [Related]
29. Fungal melanins that deteriorate paper cultural heritage: An overview. Nitiu DS; Mallo AC; Saparrat MCN Mycologia; 2020; 112(5):859-870. PubMed ID: 32821020 [TBL] [Abstract][Full Text] [Related]
30. [Induction and regulation of cellulase expression in filamentous fungi: a review]. Zhang F; Bai F; Zhao X Sheng Wu Gong Cheng Xue Bao; 2016 Nov; 32(11):1481-1495. PubMed ID: 29034619 [TBL] [Abstract][Full Text] [Related]
31. Solid lipid nanoparticles containing copaiba oil and allantoin: development and role of nanoencapsulation on the antifungal activity. Svetlichny G; Külkamp-Guerreiro IC; Cunha SL; Silva FE; Bueno K; Pohlmann AR; Fuentefria AM; Guterres SS Pharmazie; 2015 Mar; 70(3):155-64. PubMed ID: 25980176 [TBL] [Abstract][Full Text] [Related]
32. Autofluorescence for the Visualization of Microorganisms in Biodeteriorated Materials in the Context of Cultural Heritage. Stratigaki M Chempluschem; 2024 Sep; ():e202400170. PubMed ID: 39222337 [TBL] [Abstract][Full Text] [Related]
33. Preventive Conservation of Cultural Heritage: Biodeteriogens Control by Aerobiological Monitoring. Ruga L; Orlandi F; Fornaciari M Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31443346 [TBL] [Abstract][Full Text] [Related]
34. Scopulariopsis sp. and Fusarium sp. in the Documentary Heritage: Evaluation of Their Biodeterioration Ability and Antifungal Effect of Two Essential Oils. Lavin P; de Saravia SG; Guiamet P Microb Ecol; 2016 Apr; 71(3):628-33. PubMed ID: 26500067 [TBL] [Abstract][Full Text] [Related]
35. Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Ogunyemi SO; Zhang F; Abdallah Y; Zhang M; Wang Y; Sun G; Qiu W; Li B Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2230-2239. PubMed ID: 31161806 [TBL] [Abstract][Full Text] [Related]
36. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. He L; Liu Y; Mustapha A; Lin M Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731 [TBL] [Abstract][Full Text] [Related]
37. Dietary Supplementation of Magnesium Oxide (MgO) Nanoparticles for Better Survival and Growth of the Freshwater Prawn Macrobrachium rosenbergii Post-larvae. Srinivasan V; Bhavan PS; Rajkumar G; Satgurunathan T; Muralisankar T Biol Trace Elem Res; 2017 May; 177(1):196-208. PubMed ID: 27709496 [TBL] [Abstract][Full Text] [Related]
38. ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. Arciniegas-Grijalba PA; Patiño-Portela MC; Mosquera-Sánchez LP; Guerra Sierra BE; Muñoz-Florez JE; Erazo-Castillo LA; Rodríguez-Páez JE Mater Sci Eng C Mater Biol Appl; 2019 May; 98():808-825. PubMed ID: 30813087 [TBL] [Abstract][Full Text] [Related]
39. Magnesium oxide nanoparticles and thidiazuron enhance lead phytoaccumulation and antioxidative response in Raphanus sativus L. Hussain F; Hadi F; Akbar F Environ Sci Pollut Res Int; 2019 Oct; 26(29):30333-30347. PubMed ID: 31435910 [TBL] [Abstract][Full Text] [Related]
40. Blockage of both the extrinsic and intrinsic pathways of diazinon-induced apoptosis in PaTu cells by magnesium oxide and selenium nanoparticles. Shiri M; Navaei-Nigjeh M; Baeeri M; Rahimifard M; Mahboudi H; Shahverdi AR; Kebriaeezadeh A; Abdollahi M Int J Nanomedicine; 2016; 11():6239-6250. PubMed ID: 27920530 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]