These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31642855)

  • 41. RETRACTED: Facile, eco-friendly and template free photosynthesis of cauliflower like ZnO nanoparticles using leaf extract of Tamarindus indica (L.) and its biological evolution of antibacterial and antifungal activities.
    Elumalai K; Velmurugan S; Ravi S; Kathiravan V; Ashokkumar S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():1052-7. PubMed ID: 25459502
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi.
    Jayaseelan C; Rahuman AA; Kirthi AV; Marimuthu S; Santhoshkumar T; Bagavan A; Gaurav K; Karthik L; Rao KV
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 May; 90():78-84. PubMed ID: 22321514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnesium-doped zinc oxide nanoparticles alter biofilm formation of
    Iribarnegaray V; Navarro N; Robino L; Zunino P; Morales J; Scavone P
    Nanomedicine (Lond); 2019 Jun; 14(12):1551-1564. PubMed ID: 31166149
    [No Abstract]   [Full Text] [Related]  

  • 44. Improved antifungal activity and stability of chitosan nanofibers using cellulose nanocrystal on banknote papers.
    Mohammadi Amirabad L; Jonoobi M; Mousavi NS; Oksman K; Kaboorani A; Yousefi H
    Carbohydr Polym; 2018 Jun; 189():229-237. PubMed ID: 29580404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats.
    Mangalampalli B; Dumala N; Grover P
    Regul Toxicol Pharmacol; 2017 Nov; 90():170-184. PubMed ID: 28899817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles.
    Noshirvani N; Ghanbarzadeh B; Mokarram RR; Hashemi M; Coma V
    Int J Biol Macromol; 2017 Jun; 99():530-538. PubMed ID: 28267614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum.
    Lazar EE; Wills RB; Ho BT; Harris AM; Spohr LJ
    Lett Appl Microbiol; 2008 Jun; 46(6):688-92. PubMed ID: 18444976
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications.
    Hickey DJ; Ercan B; Sun L; Webster TJ
    Acta Biomater; 2015 Mar; 14():175-84. PubMed ID: 25523875
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorometric detection and estimation of fungal biomass on cultural heritage materials.
    Konkol N; McNamara CJ; Mitchell R
    J Microbiol Methods; 2010 Feb; 80(2):178-82. PubMed ID: 20026363
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor.
    Ma B; Yu N; Han Y; Gao M; Wang S; Li S; Guo L; She Z; Zhao Y; Jin C; Gao F
    J Environ Manage; 2018 Sep; 222():475-482. PubMed ID: 29908478
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method.
    Carrillo-González R; Martínez-Gómez MA; González-Chávez MDCA; Mendoza Hernández JC
    Sci Total Environ; 2016 Sep; 565():872-881. PubMed ID: 27015961
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models].
    Gutiérrez-Rojas I; Moreno-Sarmiento N; Montoya D
    Rev Iberoam Micol; 2015; 32(1):1-12. PubMed ID: 24607657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger.
    Gálvez-Iriqui AC; Cortez-Rocha MO; Burgos-Hernández A; Calderón-Santoyo M; Argüelles-Monal WM; Plascencia-Jatomea M
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):2985-3000. PubMed ID: 30747297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antifungal properties of silver nanoparticles against indoor mould growth.
    Ogar A; Tylko G; Turnau K
    Sci Total Environ; 2015 Jul; 521-522():305-14. PubMed ID: 25847174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula - Containing wheat germ oil and stabilized by magnesium oxide nanoparticles.
    Elmotasem H; Farag HK; Salama AAA
    Int J Pharm; 2018 Aug; 547(1-2):83-96. PubMed ID: 29777765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel mutation method for increased cellulase production.
    Chand P; Aruna A; Maqsood AM; Rao LV
    J Appl Microbiol; 2005; 98(2):318-23. PubMed ID: 15659186
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum.
    Dimkpa CO; McLean JE; Britt DW; Anderson AJ
    Biometals; 2013 Dec; 26(6):913-24. PubMed ID: 23933719
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi.
    Xing K; Shen X; Zhu X; Ju X; Miao X; Tian J; Feng Z; Peng X; Jiang J; Qin S
    Int J Biol Macromol; 2016 Jan; 82():830-6. PubMed ID: 26434526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro polymyxin activity against clinical multidrug-resistant fungi.
    Yousfi H; Ranque S; Rolain JM; Bittar F
    Antimicrob Resist Infect Control; 2019; 8():66. PubMed ID: 31044071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods.
    Mirtalebi SS; Almasi H; Alizadeh Khaledabad M
    Int J Biol Macromol; 2019 May; 128():848-857. PubMed ID: 30731158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.