These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31643125)

  • 1. Bridge-Clamp Bis(tetrazine)s with [N]
    Mboyi CD; Vivier D; Daher A; Fleurat-Lessard P; Cattey H; Devillers CH; Bernhard C; Denat F; Roger J; Hierso JC
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1149-1154. PubMed ID: 31643125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions.
    Siegl SJ; Galeta J; Dzijak R; Vázquez A; Del Río-Villanueva M; Dračínský M; Vrabel M
    Chembiochem; 2019 Apr; 20(7):886-890. PubMed ID: 30561884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clip to Click: Controlling Inverse Electron-Demand Diels-Alder Reactions with Macrocyclic Tetrazines.
    Novianti I; Kowada T; Mizukami S
    Org Lett; 2022 May; 24(17):3223-3226. PubMed ID: 35446571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles.
    Wu H; Devaraj NK
    Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acids with fluorescent tetrazine ethers as bioorthogonal handles for peptide modification.
    Ros E; Bellido M; Matarin JA; Gallen A; Martínez M; Rodríguez L; Verdaguer X; Ribas de Pouplana L; Riera A
    RSC Adv; 2022 May; 12(23):14321-14327. PubMed ID: 35702248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substituent Effects in Bioorthogonal Diels-Alder Reactions of 1,2,4,5-Tetrazines.
    Houszka N; Mikula H; Svatunek D
    Chemistry; 2023 May; 29(29):e202300345. PubMed ID: 36853623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational model to predict the Diels-Alder reactivity of aryl/alkyl-substituted tetrazines.
    Svatunek D; Denk C; Mikula H
    Monatsh Chem; 2018; 149(4):833-837. PubMed ID: 29681659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a novel antibody-tetrazine conjugate for bioorthogonal pretargeting.
    Maggi A; Ruivo E; Fissers J; Vangestel C; Chatterjee S; Joossens J; Sobott F; Staelens S; Stroobants S; Van Der Veken P; Wyffels L; Augustyns K
    Org Biomol Chem; 2016 Aug; 14(31):7544-51. PubMed ID: 27431745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrazine-induced activation of a trimethyl lock as a click-to-release system for protected doxorubicin.
    Friederich J; Xu C; Raunft P; Fuchs HLS; Brönstrup M
    Chem Commun (Camb); 2023 Jun; 59(48):7451-7454. PubMed ID: 37254691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse-electron demand Diels Alder Reactions between glycals and tetrazines.
    Marzabadi CH; Kelty SP; Altamura A
    Carbohydr Res; 2022 Sep; 519():108623. PubMed ID: 35738050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.
    Eising S; Xin BT; Kleinpenning F; Heming JJA; Florea BI; Overkleeft HS; Bonger KM
    Chembiochem; 2018 Aug; 19(15):1648-1652. PubMed ID: 29806887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational insights into the inverse electron-demand Diels-Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate.
    García-Aznar P; Escorihuela J
    Org Biomol Chem; 2022 Aug; 20(32):6400-6412. PubMed ID: 35876298
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Gavriel K; van Doeselaar DCA; Geers DWT; Neumann K
    RSC Chem Biol; 2023 Aug; 4(9):685-691. PubMed ID: 37654505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Stable and Selective Tetrazines for the Coordination-Assisted Bioorthogonal Ligation with Vinylboronic Acids.
    Eising S; Engwerda AHJ; Riedijk X; Bickelhaupt FM; Bonger KM
    Bioconjug Chem; 2018 Sep; 29(9):3054-3059. PubMed ID: 30080405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, Synthesis, Conjugation, and Reactivity of Novel
    Longo B; Zanato C; Piras M; Dall'Angelo S; Windhorst AD; Vugts DJ; Baldassarre M; Zanda M
    Bioconjug Chem; 2020 Sep; 31(9):2201-2210. PubMed ID: 32786505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double Click: Unexpected 1:2 Stoichiometry in a Norbornene-Tetrazine Reaction.
    Devi G; Hedger AK; Whitby RJ; Watts JK
    J Org Chem; 2023 May; 88(9):5341-5347. PubMed ID: 37058436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of inverse electron demand Diels-Alder reactions (iEDDA) of norbornenes and 3,6-dipyridin-2-yl-1,2,4,5-tetrazine.
    Knall AC; Hollauf M; Slugovc C
    Tetrahedron Lett; 2014 Aug; 55(34):4763-4766. PubMed ID: 25152544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catching up with tetrazines: coordination of Re(I) to 1,2,4-triazine facilitates an inverse electron demand Diels-Alder reaction with strained alkynes to a greater extent than in corresponding 1,2,4,5-tetrazines.
    Sims M; Kyriakou S; Matthews A; Deary ME; Kozhevnikov VN
    Dalton Trans; 2023 Aug; 52(31):10927-10932. PubMed ID: 37489645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiolabelling of peptides with tetrazine ligation based on the inverse electron-demand Diels-Alder reaction: rapid, catalyst-free and mild conversion of 1,4-dihydropyridazines to pyridazines.
    Otaru S; Martinmäki T; Kuurne I; Paulus A; Helariutta K; Sarparanta M; Airaksinen AJ
    RSC Adv; 2023 Jul; 13(32):22606-22615. PubMed ID: 37501774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regioselective Inverse Electron Demand Diels-Alder Reactions of N-Acyl 6-Amino-3-(methylthio)-1,2,4,5-tetrazines.
    Boger DL; Schaum RP; Garbaccio RM
    J Org Chem; 1998 Sep; 63(18):6329-6337. PubMed ID: 11672266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.