These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 31643146)
1. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material. Casado N; Mantione D; Shanmukaraj D; Mecerreyes D ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte. Wu H; Ye Z; Zhu J; Luo S; Li L; Yuan W ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36300925 [TBL] [Abstract][Full Text] [Related]
4. Dicyanotriphenylamine-Based Polyimides as High-Performance Electrodes for Next Generation Organic Lithium-Ion Batteries. Labasan KB; Lin HJ; Baskoro F; Togonon JJH; Wong HQ; Chang CW; Arco SD; Yen HJ ACS Appl Mater Interfaces; 2021 Apr; 13(15):17467-17477. PubMed ID: 33825434 [TBL] [Abstract][Full Text] [Related]
5. Conducting Redox Polymer as a Robust Organic Electrode-Active Material in Acidic Aqueous Electrolyte towards Polymer-Air Secondary Batteries. Oka K; Strietzel C; Emanuelsson R; Nishide H; Oyaizu K; Strømme M; Sjödin M ChemSusChem; 2020 May; 13(9):2280-2285. PubMed ID: 32267605 [TBL] [Abstract][Full Text] [Related]
6. A Bipolar and Self-Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual-Ion Batteries. Wang HG; Wang H; Si Z; Li Q; Wu Q; Shao Q; Wu L; Liu Y; Wang Y; Song S; Zhang H Angew Chem Int Ed Engl; 2019 Jul; 58(30):10204-10208. PubMed ID: 31127675 [TBL] [Abstract][Full Text] [Related]
7. Dual redox-active porous polyimides as high performance and versatile electrode material for next-generation batteries. Goujon N; Lahnsteiner M; Cerrón-Infantes DA; Moura HM; Mantione D; Unterlass MM; Mecerreyes D Mater Horiz; 2023 Mar; 10(3):967-976. PubMed ID: 36633135 [TBL] [Abstract][Full Text] [Related]
8. Redox-Active High-Performance Polyimides as Versatile Electrode Materials for Organic Lithium- and Sodium-Ion Batteries. Lubis AL; Baskoro F; Lin TH; Wong HQ; Liou GS; Yen HJ ACS Appl Mater Interfaces; 2024 Sep; 16(37):48722-48735. PubMed ID: 38148122 [TBL] [Abstract][Full Text] [Related]
9. Poly(exTTF): a novel redox-active polymer as active material for li-organic batteries. Häupler B; Burges R; Friebe C; Janoschka T; Schmidt D; Wild A; Schubert US Macromol Rapid Commun; 2014 Aug; 35(15):1367-71. PubMed ID: 24861014 [TBL] [Abstract][Full Text] [Related]
10. Exploiting Polythiophenyl-Triazine-Based Conjugated Microporous Polymer with Superior Lithium-Storage Performance. Ren SB; Ma W; Zhang C; Chen L; Wang K; Li RR; Shen M; Han DM; Chen Y; Jiang JX ChemSusChem; 2020 May; 13(9):2295-2302. PubMed ID: 32162415 [TBL] [Abstract][Full Text] [Related]
11. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
12. A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Wang G; Chandrasekhar N; Biswal BP; Becker D; Paasch S; Brunner E; Addicoat M; Yu M; Berger R; Feng X Adv Mater; 2019 Jul; 31(28):e1901478. PubMed ID: 31099072 [TBL] [Abstract][Full Text] [Related]
13. Polarity-Switchable Symmetric Graphite Batteries with High Energy and High Power Densities. Wang G; Wang F; Zhang P; Zhang J; Zhang T; Müllen K; Feng X Adv Mater; 2018 Sep; 30(39):e1802949. PubMed ID: 30133877 [TBL] [Abstract][Full Text] [Related]
14. High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte. Tian J; Cao D; Zhou X; Hu J; Huang M; Li C ACS Nano; 2018 Apr; 12(4):3424-3435. PubMed ID: 29617114 [TBL] [Abstract][Full Text] [Related]
15. Unveiling the Role of Charge Dilution and Anionic Chemistry in Enabling High-Rate p-Type Polymer Cathodes for Dual-Ion Batteries. Zhong L; Zhang Y; Li J; Fang L; Liu C; Wang X; Zhang Z; Yu D ACS Nano; 2023 Sep; 17(18):18190-18199. PubMed ID: 37706655 [TBL] [Abstract][Full Text] [Related]
16. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895 [TBL] [Abstract][Full Text] [Related]
17. Symmetric Sodium-Ion Battery Based on Dual-Electron Reactions of NASICON-Structured Na Zhou Y; Shao X; Lam KH; Zheng Y; Zhao L; Wang K; Zhao J; Chen F; Hou X ACS Appl Mater Interfaces; 2020 Jul; 12(27):30328-30335. PubMed ID: 32530260 [TBL] [Abstract][Full Text] [Related]
18. A novel π-conjugated poly(biphenyl diimide) with full utilization of carbonyls as a highly stable organic electrode for Li-ion batteries. Wang Z; Zhang B; Zhang Y; Yan N; He G RSC Adv; 2020 Aug; 10(52):31049-31055. PubMed ID: 35520648 [TBL] [Abstract][Full Text] [Related]
19. Naphthalene dianhydride organic anode for a 'rocking-chair' zinc-proton hybrid ion battery. Ghosh M; Vijayakumar V; Kurian M; Dilwale S; Kurungot S Dalton Trans; 2021 Mar; 50(12):4237-4243. PubMed ID: 33751012 [TBL] [Abstract][Full Text] [Related]
20. Development, Essence, and Application of a Metal-Catalysis Battery. Feng Y; Yan S; Zhang X; Wang Y Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]