These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31644266)

  • 1. Introduction of Bifunctionality into the Multidomain Architecture of the ω-Ester-Containing Peptide Plesiocin.
    Lee C; Lee H; Park JU; Kim S
    Biochemistry; 2020 Jan; 59(3):285-289. PubMed ID: 31644266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Mining Reveals High Topological Diversity of ω-Ester-Containing Peptides and Divergent Evolution of ATP-Grasp Macrocyclases.
    Lee H; Choi M; Park JU; Roh H; Kim S
    J Am Chem Soc; 2020 Feb; 142(6):3013-3023. PubMed ID: 31961152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic Cross-Linking of Side Chains Generates a Modified Peptide with Four Hairpin-like Bicyclic Repeats.
    Lee H; Park Y; Kim S
    Biochemistry; 2017 Sep; 56(37):4927-4930. PubMed ID: 28841794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Topologically Distinct Modified Peptide with Multiple Bicyclic Core Motifs Expands the Diversity of Microviridin-Like Peptides.
    Roh H; Han Y; Lee H; Kim S
    Chembiochem; 2019 Apr; 20(8):1051-1059. PubMed ID: 30576039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB.
    Song I; Kim Y; Yu J; Go SY; Lee HG; Song WJ; Kim S
    Nat Chem Biol; 2021 Nov; 17(11):1123-1131. PubMed ID: 34475564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of RiPP pathways for the production of artificial peptides bearing various non-proteinogenic structures.
    Goto Y; Suga H
    Curr Opin Chem Biol; 2018 Oct; 46():82-90. PubMed ID: 29957445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ω-Ester Macrocycles in a New Multicore RiPP Natural Product.
    Zhao G; Kosek D; Liu HB; Ohlemacher SI; Blackburne B; Nikolskaya A; Makarova KS; Sun J; Barry Iii CE; Koonin EV; Dyda F; Bewley CA
    J Am Chem Soc; 2021 Jun; 143(21):8056-8068. PubMed ID: 34028251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and analysis of novel bicyclic and bifunctional protease inhibitors.
    Jaulent AM; Leatherbarrow RJ
    Protein Eng Des Sel; 2004 Sep; 17(9):681-7. PubMed ID: 15486024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a protease inhibitor from Acacia karroo with a common combining loop and overlapping binding sites for chymotrypsin and trypsin.
    Patthy A; Molnár T; Porrogi P; Naudé R; Gráf L
    Arch Biochem Biophys; 2015 Jan; 565():9-16. PubMed ID: 25447841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteinase inhibitors from desert locust, Schistocerca gregaria: engineering of both P(1) and P(1)' residues converts a potent chymotrypsin inhibitor to a potent trypsin inhibitor.
    Malik Z; Amir S; Pál G; Buzás Z; Várallyay E; Antal J; Szilágyi Z; Vékey K; Asbóth B; Patthy A; Gráf L
    Biochim Biophys Acta; 1999 Sep; 1434(1):143-50. PubMed ID: 10556568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous expression of cryptic biosynthetic gene cluster from Streptomyces prunicolor yields novel bicyclic peptide prunipeptin.
    Unno K; Kodani S
    Microbiol Res; 2021 Mar; 244():126669. PubMed ID: 33360751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products.
    Wu C; van der Donk WA
    Curr Opin Biotechnol; 2021 Jun; 69():221-231. PubMed ID: 33556835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities.
    Scheidig AJ; Hynes TR; Pelletier LA; Wells JA; Kossiakoff AA
    Protein Sci; 1997 Sep; 6(9):1806-24. PubMed ID: 9300481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse forms of Pin-II family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera.
    Tamhane VA; Giri AP; Sainani MN; Gupta VS
    Gene; 2007 Nov; 403(1-2):29-38. PubMed ID: 17870253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction of lentil trypsin-chymotrypsin inhibitors with human and bovine proteinases.
    Weder JK; Kahleyss R
    J Agric Food Chem; 2003 Dec; 51(27):8045-50. PubMed ID: 14690394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vinyl ester-based cyclic peptide proteasome inhibitors.
    Baldisserotto A; Marastoni M; Fiorini S; Pretto L; Ferretti V; Gavioli R; Tomatis R
    Bioorg Med Chem Lett; 2008 Mar; 18(6):1849-54. PubMed ID: 18294845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Ribosomally Synthesized and Post-Translationally Modified Peptides Containing C-C Cross-Links.
    Laws D; Plouch EV; Blakey SB
    J Nat Prod; 2022 Oct; 85(10):2519-2539. PubMed ID: 36136399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.