These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31644542)

  • 1. Optimized fast GPU implementation of robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction.
    Zhang C; Hosseini SAH; Weingärtner S; Uǧurbil K; Moeller S; Akçakaya M
    PLoS One; 2019; 14(10):e0223315. PubMed ID: 31644542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning.
    Zhang C; Moeller S; Demirel OB; Uğurbil K; Akçakaya M
    Neuroimage; 2022 Aug; 256():119248. PubMed ID: 35487456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative training of robust k-space interpolation networks for improved image reconstruction with limited scan specific training samples.
    Dawood P; Breuer F; Stebani J; Burd P; Homolya I; Oberberger J; Jakob PM; Blaimer M
    Magn Reson Med; 2023 Feb; 89(2):812-827. PubMed ID: 36226661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.
    Arefeen Y; Beker O; Cho J; Yu H; Adalsteinsson E; Bilgic B
    Magn Reson Med; 2022 Feb; 87(2):764-780. PubMed ID: 34601751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Split-slice training and hyperparameter tuning of RAKI networks for simultaneous multi-slice reconstruction.
    Nencka AS; Arpinar VE; Bhave S; Yang B; Banerjee S; McCrea M; Mickevicius NJ; Muftuler LT; Koch KM
    Magn Reson Med; 2021 Jun; 85(6):3272-3280. PubMed ID: 33331002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast GPU Implementation of a Scan-Specific Deep Learning Reconstruction for Accelerated Magnetic Resonance Imaging.
    Zhang C; Weingärtner S; Moeller S; Uğurbil K; Akçakaya M
    IEEE Int Conf Electro Inf Technol; 2018 May; 2018():399-403. PubMed ID: 31893160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-weight respecification of scan-specific learning for parallel imaging.
    Tao H; Zhang W; Wang H; Wang S; Liang D; Xu X; Liu Q
    Magn Reson Imaging; 2023 Apr; 97():1-12. PubMed ID: 36567001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated Simultaneous Multi-Slice MRI using Subject-Specific Convolutional Neural Networks.
    Zhang C; Moeller S; Weingärtner S; Uğurbil K; Akçakaya M
    Conf Rec Asilomar Conf Signals Syst Comput; 2018 Oct; 2018():1636-1640. PubMed ID: 31892767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-Specific Convolutional Neural Networks for Accelerated Magnetic Resonance Imaging.
    Akçakay M; Moeller S; Weingärtner S; Uğurbil K
    Proc Int Jt Conf Neural Netw; 2018 Jul; 2018():. PubMed ID: 31893177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPU accelerated Cartesian GRAPPA reconstruction using CUDA.
    Inam O; Qureshi M; Laraib Z; Akram H; Omer H
    J Magn Reson; 2022 Apr; 337():107175. PubMed ID: 35259611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A miniature U-net for
    Xu L; Xu J; Zheng Q; Yuan J; Liu J
    Quant Imaging Med Surg; 2022 Sep; 12(9):4390-4401. PubMed ID: 36060590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. k-Space deep learning for reference-free EPI ghost correction.
    Lee J; Han Y; Ryu JK; Park JY; Ye JC
    Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive convolutional neural networks for accelerating magnetic resonance imaging via k-space data interpolation.
    Du T; Zhang H; Li Y; Pickup S; Rosen M; Zhou R; Song HK; Fan Y
    Med Image Anal; 2021 Aug; 72():102098. PubMed ID: 34091426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPICER: Self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction.
    Hu Y; Gan W; Ying C; Wang T; Eldeniz C; Liu J; Chen Y; An H; Kamilov US
    Magn Reson Med; 2024 Sep; 92(3):1048-1063. PubMed ID: 38725383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A noise robust image reconstruction using slice aware cycle interpolator network for parallel imaging in MRI.
    Kim J; Lee W; Kang B; Seo H; Park H
    Med Phys; 2024 Jun; 51(6):4143-4157. PubMed ID: 38598259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.