BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 31644573)

  • 21. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics.
    Rampelt H; Zerbes RM; van der Laan M; Pfanner N
    Biochim Biophys Acta Mol Cell Res; 2017 Apr; 1864(4):737-746. PubMed ID: 27614134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology.
    Rios KE; Zhou M; Lott NM; Beauregard CR; McDaniel DP; Conrads TP; Schaefer BC
    Cells; 2022 Mar; 11(7):. PubMed ID: 35406738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dynamin superfamily-like pseudoenzyme coordinates with MICOS to promote cristae architecture.
    Kumar A; Gok MO; Nguyen KN; Connor OM; Reese ML; Wideman JG; Muñoz-Gómez SA; Friedman JR
    Curr Biol; 2024 Jun; 34(12):2606-2622.e9. PubMed ID: 38692277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology.
    Tarasenko D; Barbot M; Jans DC; Kroppen B; Sadowski B; Heim G; Möbius W; Jakobs S; Meinecke M
    J Cell Biol; 2017 Apr; 216(4):889-899. PubMed ID: 28254827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function.
    Darshi M; Mendiola VL; Mackey MR; Murphy AN; Koller A; Perkins GA; Ellisman MH; Taylor SS
    J Biol Chem; 2011 Jan; 286(4):2918-32. PubMed ID: 21081504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery.
    Modi S; López-Doménech G; Halff EF; Covill-Cooke C; Ivankovic D; Melandri D; Arancibia-Cárcamo IL; Burden JJ; Lowe AR; Kittler JT
    Nat Commun; 2019 Sep; 10(1):4399. PubMed ID: 31562315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins.
    Pape JK; Stephan T; Balzarotti F; Büchner R; Lange F; Riedel D; Jakobs S; Hell SW
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20607-20614. PubMed ID: 32788360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct Roles of Mic12 and Mic27 in the Mitochondrial Contact Site and Cristae Organizing System.
    Zerbes RM; Höß P; Pfanner N; van der Laan M; Bohnert M
    J Mol Biol; 2016 Apr; 428(8):1485-92. PubMed ID: 26968360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mic10, a Core Subunit of the Mitochondrial Contact Site and Cristae Organizing System, Interacts with the Dimeric F
    Rampelt H; Bohnert M; Zerbes RM; Horvath SE; Warscheid B; Pfanner N; van der Laan M
    J Mol Biol; 2017 Apr; 429(8):1162-1170. PubMed ID: 28315355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial inner membrane protein, Mic60/mitofilin in mammalian organ protection.
    Feng Y; Madungwe NB; Bopassa JC
    J Cell Physiol; 2019 Apr; 234(4):3383-3393. PubMed ID: 30259514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of membrane contact sites in protein import into mitochondria.
    Horvath SE; Rampelt H; Oeljeklaus S; Warscheid B; van der Laan M; Pfanner N
    Protein Sci; 2015 Mar; 24(3):277-97. PubMed ID: 25514890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture.
    Friedman JR; Mourier A; Yamada J; McCaffery JM; Nunnari J
    Elife; 2015 Apr; 4():. PubMed ID: 25918844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure.
    Ding C; Wu Z; Huang L; Wang Y; Xue J; Chen S; Deng Z; Wang L; Song Z; Chen S
    Sci Rep; 2015 Nov; 5():16064. PubMed ID: 26530328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction.
    Zhou W; Ma D; Sun AX; Tran HD; Ma DL; Singh BK; Zhou J; Zhang J; Wang D; Zhao Y; Yen PM; Goh E; Tan EK
    Hum Mol Genet; 2019 Apr; 28(7):1100-1116. PubMed ID: 30496485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria.
    Jans DC; Wurm CA; Riedel D; Wenzel D; Stagge F; Deckers M; Rehling P; Jakobs S
    Proc Natl Acad Sci U S A; 2013 May; 110(22):8936-41. PubMed ID: 23676277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae.
    Muñoz-Gómez SA; Slamovits CH; Dacks JB; Baier KA; Spencer KD; Wideman JG
    Curr Biol; 2015 Jun; 25(11):1489-95. PubMed ID: 26004762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global Interactome Mapping of Mitochondrial Intermembrane Space Proteases Identifies a Novel Function for HTRA2.
    Botham A; Coyaud E; Nirmalanandhan VS; Gronda M; Hurren R; Maclean N; St-Germain J; Mirali S; Laurent E; Raught B; Schimmer A
    Proteomics; 2019 Dec; 19(24):e1900139. PubMed ID: 31617661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.
    Aaltonen MJ; Friedman JR; Osman C; Salin B; di Rago JP; Nunnari J; Langer T; Tatsuta T
    J Cell Biol; 2016 Jun; 213(5):525-34. PubMed ID: 27241913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial contact site and cristae organizing system (MICOS) machinery supports heme biosynthesis by enabling optimal performance of ferrochelatase.
    Dietz JV; Willoughby MM; Piel RB; Ross TA; Bohovych I; Addis HG; Fox JL; Lanzilotta WN; Dailey HA; Wohlschlegel JA; Reddi AR; Medlock AE; Khalimonchuk O
    Redox Biol; 2021 Oct; 46():102125. PubMed ID: 34517185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth.
    Rampelt H; Wollweber F; Licheva M; de Boer R; Perschil I; Steidle L; Becker T; Bohnert M; van der Klei I; Kraft C; van der Laan M; Pfanner N
    Cell Rep; 2022 Jan; 38(4):110290. PubMed ID: 35081352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.