These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31644819)

  • 1. The first evidence of intrinsic epidermal bioluminescence within ray-finned fishes in the linebelly swallower Pseudoscopelus sagamianus (Chiasmodontidae).
    Ghedotti MJ; Smith WL; Davis MP
    J Fish Biol; 2019 Dec; 95(6):1540-1543. PubMed ID: 31644819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that eye-facing photophores serve as a reference for counterillumination in an order of deep-sea fishes.
    Davis AL; Sutton TT; Kier WM; Johnsen S
    Proc Biol Sci; 2020 Jun; 287(1928):20192918. PubMed ID: 32517614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of bioluminescence and photophores in the midshipman fish, Porichthys notatus.
    Anctil M
    J Morphol; 1977 Mar; 151(3):363-95. PubMed ID: 845970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence control of Stomiidae photophores.
    Mallefet J; Duchatelet L; Hermans C; Baguet F
    Acta Histochem; 2019 Jan; 121(1):7-15. PubMed ID: 30322809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of six new complete mitochondrial genomes of Chiasmodontidae (Scombriformes, Percomorpha) and considerations about the phylogenetic relationships of the family.
    Rodrigues-Oliveira IH; Pasa R; Menegidio FB; Kavalco KF
    Genomics Inform; 2023 Mar; 21(1):e10. PubMed ID: 37037468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflector of the body photophore in lanternfish is mechanistically tuned to project the biochemical emission in photocytes for counterillumination.
    Paitio J; Yano D; Muneyama E; Takei S; Asada H; Iwasaka M; Oba Y
    Biochem Biophys Res Commun; 2020 Jan; 521(4):821-826. PubMed ID: 31706576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated and Widespread Evolution of Bioluminescence in Marine Fishes.
    Davis MP; Sparks JS; Smith WL
    PLoS One; 2016; 11(6):e0155154. PubMed ID: 27276229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cuticular Photophores of Two Decapod Crustaceans, Oplophorus spinosus and Systellaspis debilis.
    Nowel MS; Shelton PM; Herring PJ
    Biol Bull; 1998 Dec; 195(3):290-307. PubMed ID: 28297613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen consumption and luminescence of Porichthys photophores stimulated by potassium cyanide.
    Mallefet J; Baguet F
    J Exp Biol; 1984 Mar; 109():341-52. PubMed ID: 6736865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative innervation of cephalic photophores of the loosejaw dragonfishes (Teleostei: Stomiiformes: Stomiidae): evidence for parallel evolution of long-wave bioluminescence.
    Kenaley CP
    J Morphol; 2010 Apr; 271(4):418-37. PubMed ID: 19924766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic and transcriptomic analyses reveal the evolution of bioluminescence and light detection in marine deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda).
    Wong JM; Pérez-Moreno JL; Chan TY; Frank TM; Bracken-Grissom HD
    Mol Phylogenet Evol; 2015 Feb; 83():278-92. PubMed ID: 25482362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence and luminescence of isolated photophores of Porichthys.
    Baguet F; Zietz-Nicolas AM
    J Exp Biol; 1979 Feb; 78():47-57. PubMed ID: 438722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nervous control of photophores in luminescent fishes.
    Zaccone G; Abelli L; Salpietro L; Zaccone D; Macrì B; Marino F
    Acta Histochem; 2011 Jul; 113(4):387-94. PubMed ID: 20598350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacomorphological study of denervation induced by 6-hydroxydopamine in Porichthys photophores.
    Anctil M; Case JF
    Cell Tissue Res; 1976 Feb; 166(3):365-88. PubMed ID: 943239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light organ photosensitivity in deep-sea shrimp may suggest a novel role in counterillumination.
    Bracken-Grissom HD; DeLeo DM; Porter ML; Iwanicki T; Sickles J; Frank TM
    Sci Rep; 2020 Mar; 10(1):4485. PubMed ID: 32161283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of luminescence from lantern shark (Etmopterus spinax) photophores.
    Claes JM; Mallefet J
    Commun Integr Biol; 2011 May; 4(3):251-3. PubMed ID: 21980552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open water camouflage via 'leaky' light guides in the midwater squid Galiteuthis.
    Holt AL; Sweeney AM
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27278362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunolocalization of neurotransmitter-synthesizing enzymes and neuropeptides with associated receptors in the photophores of the hatchetfish, Argyropelecus hemigymnus Cocco, 1829.
    Zaccone G; Abelli L; Salpietro L; Zaccone D; Manganaro M; Marino F
    Acta Histochem; 2011 Jul; 113(4):457-64. PubMed ID: 20546867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide in control of luminescence from hatchetfish (Argyropelecus hemigymnus) photophores.
    Krönström J; Holmgren S; Baguet F; Salpietro L; Mallefet J
    J Exp Biol; 2005 Aug; 208(Pt 15):2951-61. PubMed ID: 16043600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lantern shark's light switch: turning shallow water crypsis into midwater camouflage.
    Claes JM; Mallefet J
    Biol Lett; 2010 Oct; 6(5):685-7. PubMed ID: 20410033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.