BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31645458)

  • 1. SIK3 suppresses neuronal hyperexcitability by regulating the glial capacity to buffer K
    Li H; Russo A; DiAntonio A
    J Cell Biol; 2019 Dec; 218(12):4017-4029. PubMed ID: 31645458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional regulation of glial potassium buffering - glioprotection versus neuroprotection.
    Li H; Lones L; DiAntonio A
    Elife; 2021 Mar; 10():. PubMed ID: 33646119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIK3 and Wnk converge on Fray to regulate glial K+ buffering and seizure susceptibility.
    Lones L; DiAntonio A
    PLoS Genet; 2023 Jan; 19(1):e1010581. PubMed ID: 36626385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIK3-HDAC4 signaling regulates
    Fujii S; Emery P; Amrein H
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):E6669-E6677. PubMed ID: 28743754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding and Fasting Signals Converge on the LKB1-SIK3 Pathway to Regulate Lipid Metabolism in Drosophila.
    Choi S; Lim DS; Chung J
    PLoS Genet; 2015 May; 11(5):e1005263. PubMed ID: 25996931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting SIK3 to modulate hippocampal synaptic plasticity and cognitive function by regulating the transcription of HDAC4 in a mouse model of Alzheimer's disease.
    Dai X; Lin A; Zhuang L; Zeng Q; Cai L; Wei Y; Liang H; Gao W; Zhang J; Chen X
    Neuropsychopharmacology; 2024 May; 49(6):942-952. PubMed ID: 38057370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt-Inducible Kinase 3 Provides Sugar Tolerance by Regulating NADPH/NADP
    Teesalu M; Rovenko BM; Hietakangas V
    Curr Biol; 2017 Feb; 27(3):458-464. PubMed ID: 28132818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hormone-dependent module regulating energy balance.
    Wang B; Moya N; Niessen S; Hoover H; Mihaylova MM; Shaw RJ; Yates JR; Fischer WH; Thomas JB; Montminy M
    Cell; 2011 May; 145(4):596-606. PubMed ID: 21565616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases.
    Walkinshaw DR; Weist R; Kim GW; You L; Xiao L; Nie J; Li CS; Zhao S; Xu M; Yang XJ
    J Biol Chem; 2013 Mar; 288(13):9345-62. PubMed ID: 23393134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice.
    Sasagawa S; Takemori H; Uebi T; Ikegami D; Hiramatsu K; Ikegawa S; Yoshikawa H; Tsumaki N
    Development; 2012 Mar; 139(6):1153-63. PubMed ID: 22318228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial Ca
    Weiss S; Melom JE; Ormerod KG; Zhang YV; Littleton JT
    Elife; 2019 Apr; 8():. PubMed ID: 31025939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glial SIK3: A central player in ion and volume homeostasis in
    Kahanovitch U; Olsen ML
    J Cell Biol; 2019 Dec; 218(12):3888-3889. PubMed ID: 31723008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PTHrP targets salt-inducible kinases, HDAC4 and HDAC5, to repress chondrocyte hypertrophy in the growth plate.
    Nishimori S; Wein MN; Kronenberg HM
    Bone; 2021 Jan; 142():115709. PubMed ID: 33148508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia.
    Li J; Chen J; Ricupero CL; Hart RP; Schwartz MS; Kusnecov A; Herrup K
    Nat Med; 2012 May; 18(5):783-90. PubMed ID: 22466704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation.
    Deng X; Ewton DZ; Mercer SE; Friedman E
    J Biol Chem; 2005 Feb; 280(6):4894-905. PubMed ID: 15546868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LKB1, Salt-Inducible Kinases, and MEF2C Are Linked Dependencies in Acute Myeloid Leukemia.
    Tarumoto Y; Lu B; Somerville TDD; Huang YH; Milazzo JP; Wu XS; Klingbeil O; El Demerdash O; Shi J; Vakoc CR
    Mol Cell; 2018 Mar; 69(6):1017-1027.e6. PubMed ID: 29526696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron-glia relationships in human and experimental epilepsy: a biochemical point of view.
    Grisar TM
    Adv Neurol; 1986; 44():1045-73. PubMed ID: 2871719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional Regulation of the Glutamate/GABA/Glutamine Cycle in Adult Glia Controls Motor Activity and Seizures in
    Mazaud D; Kottler B; Gonçalves-Pimentel C; Proelss S; Tüchler N; Deneubourg C; Yuasa Y; Diebold C; Jungbluth H; Lai EC; Hirth F; Giangrande A; Fanto M
    J Neurosci; 2019 Jul; 39(27):5269-5283. PubMed ID: 31064860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DPP signaling controls development of the lamina glia required for retinal axon targeting in the visual system of Drosophila.
    Yoshida S; Soustelle L; Giangrande A; Umetsu D; Murakami S; Yasugi T; Awasaki T; Ito K; Sato M; Tabata T
    Development; 2005 Oct; 132(20):4587-98. PubMed ID: 16176948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis.
    Paroni G; Mizzau M; Henderson C; Del Sal G; Schneider C; Brancolini C
    Mol Biol Cell; 2004 Jun; 15(6):2804-18. PubMed ID: 15075374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.