These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31645589)

  • 1. A new class of nonreciprocal spin waves on the edges of 2D antiferromagnetic honeycomb nanoribbons.
    Ghader D; Khater A
    Sci Rep; 2019 Oct; 9(1):15220. PubMed ID: 31645589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric dynamics of edge exchange spin waves in honeycomb nanoribbons with zigzag and bearded edge boundaries.
    Ghader D; Khater A
    Sci Rep; 2019 Apr; 9(1):6290. PubMed ID: 31000811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discretized dynamics of exchange spin wave bulk and edge modes in honeycomb nanoribbons with armchair edge boundaries.
    Ghader D; Khater A
    J Phys Condens Matter; 2019 Aug; 31(31):315801. PubMed ID: 31018186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiferromagnetic magnon spintronic based on nonreciprocal and nondegenerated ultra-fast spin-waves in the canted antiferromagnet α-Fe
    El Kanj A; Gomonay O; Boventer I; Bortolotti P; Cros V; Anane A; Lebrun R
    Sci Adv; 2023 Aug; 9(32):eadh1601. PubMed ID: 37566648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves.
    Giordano A; Verba R; Zivieri R; Laudani A; Puliafito V; Gubbiotti G; Tomasello R; Siracusano G; Azzerboni B; Carpentieri M; Slavin A; Finocchio G
    Sci Rep; 2016 Oct; 6():36020. PubMed ID: 27786261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction.
    Xia J; Zhang X; Yan M; Zhao W; Zhou Y
    Sci Rep; 2016 May; 6():25189. PubMed ID: 27143311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omnidirectional flat bands in chiral magnonic crystals.
    Flores-Farías J; Gallardo RA; Brevis F; Roldán-Molina A; Cortés-Ortuño D; Landeros P
    Sci Rep; 2022 Oct; 12(1):17831. PubMed ID: 36284121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnonic Metamaterials for Spin-Wave Control with Inhomogeneous Dzyaloshinskii-Moriya Interactions.
    Zhuo F; Li H; Cheng Z; Manchon A
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Observation of Flat Bands in One-Dimensional Chiral Magnonic Crystals.
    Tacchi S; Flores-Farías J; Petti D; Brevis F; Cattoni A; Scaramuzzi G; Girardi D; Cortés-Ortuño D; Gallardo RA; Albisetti E; Carlotti G; Landeros P
    Nano Lett; 2023 Jul; 23(14):6776-6783. PubMed ID: 37343942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological Spin Excitations in Honeycomb Ferromagnet
    Chen L; Chung JH; Gao B; Chen T; Stone MB; Kolesnikov AI; Huang Q; Dai P
    Phys Rev X; 2018 Dec; 8(4):. PubMed ID: 38915421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flat Bands, Indirect Gaps, and Unconventional Spin-Wave Behavior Induced by a Periodic Dzyaloshinskii-Moriya Interaction.
    Gallardo RA; Cortés-Ortuño D; Schneider T; Roldán-Molina A; Ma F; Troncoso RE; Lenz K; Fangohr H; Lindner J; Landeros P
    Phys Rev Lett; 2019 Feb; 122(6):067204. PubMed ID: 30822086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiferromagnetic domain wall as spin wave polarizer and retarder.
    Lan J; Yu W; Xiao J
    Nat Commun; 2017 Aug; 8(1):178. PubMed ID: 28769036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Interaction in Ultrathin Yttrium Iron Garnet Films.
    Wang H; Chen J; Liu T; Zhang J; Baumgaertl K; Guo C; Li Y; Liu C; Che P; Tu S; Liu S; Gao P; Han X; Yu D; Wu M; Grundler D; Yu H
    Phys Rev Lett; 2020 Jan; 124(2):027203. PubMed ID: 32004033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnon Spin Relaxation and Spin Hall Effect Due to the Dipolar Interaction in Antiferromagnetic Insulators.
    Shen K
    Phys Rev Lett; 2020 Feb; 124(7):077201. PubMed ID: 32142313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiferromagnetic Spin Wave Field-Effect Transistor.
    Cheng R; Daniels MW; Zhu JG; Xiao D
    Sci Rep; 2016 Apr; 6():24223. PubMed ID: 27048928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonreciprocal Dzyaloshinskii-Moriya Magnetoacoustic Waves.
    Küß M; Heigl M; Flacke L; Hörner A; Weiler M; Albrecht M; Wixforth A
    Phys Rev Lett; 2020 Nov; 125(21):217203. PubMed ID: 33275006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonreciprocal Magnons and Symmetry-Breaking in the Noncentrosymmetric Antiferromagnet.
    Gitgeatpong G; Zhao Y; Piyawongwatthana P; Qiu Y; Harriger LW; Butch NP; Sato TJ; Matan K
    Phys Rev Lett; 2017 Jul; 119(4):047201. PubMed ID: 29341758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding
    Izadi Vishkayi S; Bagheri Tagani M
    Nanomicro Lett; 2018; 10(1):14. PubMed ID: 30393663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Distance Coherent Propagation of High-Velocity Antiferromagnetic Spin Waves.
    Wang H; Yuan R; Zhou Y; Zhang Y; Chen J; Liu S; Jia H; Yu D; Ansermet JP; Song C; Yu H
    Phys Rev Lett; 2023 Mar; 130(9):096701. PubMed ID: 36930935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Dzyaloshinskii-Moriya interaction and perpendicular anisotropy on spin waves propagation in stripe domain patterns and spin spirals.
    Gruszecki P; Kisielewski J
    Sci Rep; 2023 Jan; 13(1):1218. PubMed ID: 36681720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.