These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31645620)

  • 1. A versatile microfluidic device for highly inclined thin illumination microscopy in the moss Physcomitrella patens.
    Kozgunova E; Goshima G
    Sci Rep; 2019 Oct; 9(1):15182. PubMed ID: 31645620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Device for High-Resolution Cytoskeleton Imaging and Washout Assays in Physcomitrium (Physcomitrella) patens.
    Yoshida MW; Kozgunova E
    Methods Mol Biol; 2023; 2604():143-158. PubMed ID: 36773231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.
    Bascom CS; Wu SZ; Nelson K; Oakey J; Bezanilla M
    Plant Physiol; 2016 Sep; 172(1):28-37. PubMed ID: 27406170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence.
    Overdijk EJ; DE Keijzer J; DE Groot D; Schoina C; Bouwmeester K; Ketelaar T; Govers F
    J Microsc; 2016 Aug; 263(2):171-80. PubMed ID: 27027911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubules regulate dynamic organization of vacuoles in Physcomitrella patens.
    Oda Y; Hirata A; Sano T; Fujita T; Hiwatashi Y; Sato Y; Kadota A; Hasebe M; Hasezawa S
    Plant Cell Physiol; 2009 Apr; 50(4):855-68. PubMed ID: 19251746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Image Acquisition and Morphological Analysis of Cell Growth Mutants in Physcomitrella patens.
    Galotto G; Bibeau JP; Vidali L
    Methods Mol Biol; 2019; 1992():307-322. PubMed ID: 31148047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens.
    Miki T; Nakaoka Y; Goshima G
    Methods Mol Biol; 2016; 1470():225-46. PubMed ID: 27581297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation.
    Nakaoka Y; Miki T; Fujioka R; Uehara R; Tomioka A; Obuse C; Kubo M; Hiwatashi Y; Goshima G
    Plant Cell; 2012 Apr; 24(4):1478-93. PubMed ID: 22505727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging Mitosis in the Moss Physcomitrella patens.
    Yamada M; Miki T; Goshima G
    Methods Mol Biol; 2016; 1413():263-82. PubMed ID: 27193855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens.
    Naito H; Goshima G
    Cell Struct Funct; 2015; 40(1):31-41. PubMed ID: 25748359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of highly inclined illumination for diffraction-limited and super-resolution microscopy.
    Gardini L; Vignolini T; Curcio V; Pavone FS; Capitanio M
    Opt Express; 2023 Jul; 31(16):26208-26225. PubMed ID: 37710487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens.
    Hiwatashi Y; Obara M; Sato Y; Fujita T; Murata T; Hasebe M
    Plant Cell; 2008 Nov; 20(11):3094-106. PubMed ID: 19028965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells.
    Furt F; Lemoi K; Tüzel E; Vidali L
    BMC Plant Biol; 2012 May; 12():70. PubMed ID: 22594499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens.
    Miki T; Nishina M; Goshima G
    Plant Cell Physiol; 2015 Apr; 56(4):737-49. PubMed ID: 25588389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular tools to study Physcomitrella patens.
    Frank W; Decker EL; Reski R
    Plant Biol (Stuttg); 2005 May; 7(3):220-7. PubMed ID: 15912441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moss systems biology en route: phytohormones in Physcomitrella development.
    Decker EL; Frank W; Sarnighausen E; Reski R
    Plant Biol (Stuttg); 2006 May; 8(3):397-405. PubMed ID: 16807833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rho of Plants GTPases and Cytoskeletal Elements Control Nuclear Positioning and Asymmetric Cell Division during Physcomitrella patens Branching.
    Yi P; Goshima G
    Curr Biol; 2020 Jul; 30(14):2860-2868.e3. PubMed ID: 32470363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput cryopreservation of 140,000 Physcomitrella patens mutants.
    Schulte J; Reski R
    Plant Biol (Stuttg); 2004; 6(2):119-27. PubMed ID: 15045662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-functional microfluidic device compatible with widefield and light sheet microscopy.
    Moore RP; O'Shaughnessy EC; Shi Y; Nogueira AT; Heath KM; Hahn KM; Legant WR
    Lab Chip; 2021 Dec; 22(1):136-147. PubMed ID: 34859808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens.
    Leong SY; Yamada M; Yanagisawa N; Goshima G
    Cell Struct Funct; 2018 Mar; 43(1):53-60. PubMed ID: 29445053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.