These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31645622)

  • 21. New insights into permeability determination by coupling Stoneley wave propagation and conventional petrophysical logs in carbonate oil reservoirs.
    Rostami A; Kordavani A; Parchekhari S; Hemmati-Sarapardeh A; Helalizadeh A
    Sci Rep; 2022 Jul; 12(1):11618. PubMed ID: 35804036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Percolation Characteristics and Injection Limit of Surfactant Huff-n-Puff in a Tight Reservoir.
    Cao G; Cheng Q; Wang H; Bu R; Zhang N; Wang Q
    ACS Omega; 2022 Aug; 7(34):30389-30398. PubMed ID: 36061722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parametric analysis of surfactant-aided imbibition in fractured carbonates.
    Adibhatla B; Mohanty KK
    J Colloid Interface Sci; 2008 Jan; 317(2):513-22. PubMed ID: 17961587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced oil recovery from fractured carbonate reservoirs using nanoparticles with low salinity water and surfactant: A review on experimental and simulation studies.
    Dordzie G; Dejam M
    Adv Colloid Interface Sci; 2021 Jul; 293():102449. PubMed ID: 34034208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Water Injection Pressure and Method on Oil Recovery of Water Injection Huff and Puff in Tight Volcanic Oil Reservoirs.
    Li S; Yang S; Dong W; Yang K; Shen B; Yu J
    ACS Omega; 2022 Jun; 7(25):21595-21607. PubMed ID: 35785313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs.
    Salehi M; Johnson SJ; Liang JT
    Langmuir; 2008 Dec; 24(24):14099-107. PubMed ID: 19053658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental investigation of shale oil recovery from Qianjiang core samples by the CO
    Li L; Wang C; Li D; Fu J; Su Y; Lv Y
    RSC Adv; 2019 Sep; 9(49):28857-28869. PubMed ID: 35529611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Approach for Rate Transient Analysis of Fractured Wells from Carbonate Reservoirs with Heterogeneous Natural Fractures.
    Tang H; Yu Z; Wei F; Xu G; Lv J; Zhang S; Yang Z; Chen P
    ACS Omega; 2023 May; 8(17):15611-15619. PubMed ID: 37151497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Artificial Intelligence-Based Model for Performance Prediction of Acid Fracturing in Naturally Fractured Reservoirs.
    Hassan A; Aljawad MS; Mahmoud M
    ACS Omega; 2021 Jun; 6(21):13654-13670. PubMed ID: 34095659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parameter Optimization of Asynchronous Cyclic Waterflooding for Horizontal-Vertical Well Patterns in Tight Oil Reservoirs.
    Kang S; Pu C; Wang Y; Liu W; Wang K; Huang F; Fan Q; Gao X; Yang Q
    ACS Omega; 2022 Apr; 7(13):11226-11239. PubMed ID: 35415347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced oil displacement by nanofluid's structural disjoining pressure in model fractured porous media.
    Zhang H; Ramakrishnan TS; Nikolov A; Wasan D
    J Colloid Interface Sci; 2018 Feb; 511():48-56. PubMed ID: 28972895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solubility Variation and Prediction Model of CO
    Zhang J; Guan Y; Li T; Yin G
    ACS Omega; 2022 Dec; 7(48):44420-44427. PubMed ID: 36506220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure Transient Analysis and Transient Inflow Performance Relationship of Multiple-Fractured Horizontal Wells in Naturally Fractured Reservoirs by a Trilinear Flow Model.
    Xiang H; Han G; Ma G; Zhu Z; Zhu L; Peng L
    ACS Omega; 2021 Jul; 6(29):19222-19232. PubMed ID: 34337260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite Element Model to Simulate Two-Phase Fluid Flow in Naturally Fractured Oil Reservoirs: Part I.
    Abdel Azim R
    ACS Omega; 2022 Aug; 7(31):27278-27290. PubMed ID: 35967071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physical simulation for water invasion and water control optimization in water drive gas reservoirs.
    Xu X; Li X; Hu Y; Mei Q; Shi Y; Jiao C
    Sci Rep; 2021 Mar; 11(1):6301. PubMed ID: 33737601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical Modeling of the Impact of Salt Precipitation on CO
    Sokama-Neuyam YA; Boakye P; Aggrey WN; Obeng NO; Adu-Boahene F; Woo SH; Ursin JR
    ACS Omega; 2020 Jun; 5(24):14776-14785. PubMed ID: 32596615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-Dependent Physicochemical Changes of Carbonate Surfaces from SmartWater (Diluted Seawater) Flooding Processes for Improved Oil Recovery.
    Chen SY; Kristiansen K; Seo D; Cadirov NA; Dobbs HA; Kaufman Y; Schrader AM; Andresen Eguiluz RC; Alotaibi MB; Ayirala SC; Boles JR; Yousef AA; Israelachvili JN
    Langmuir; 2019 Jan; 35(1):41-50. PubMed ID: 30509072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of capillary imbibition when surfactant, polymer, and hot water are used as aqueous phase for oil recovery.
    Babadagli T
    J Colloid Interface Sci; 2002 Feb; 246(1):203-13. PubMed ID: 16290401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the Static and Dynamic Imbibition Effect of Surfactants and the Relative Mechanism in Low-Permeability Reservoirs.
    Tian F; Zhao Y; Yan Y; Gou X; Shi L; Qin F; Shi J; Lv J; Cao B; Li Y; Lu X
    ACS Omega; 2020 Jul; 5(28):17442-17449. PubMed ID: 32715229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated Hierarchy-Correlation Model for Evaluating Water-Driven Oil Reservoirs.
    Chai X; Tian L; Wang G; Zhang K; Wang H; Peng L; Wang J
    ACS Omega; 2021 Dec; 6(50):34460-34469. PubMed ID: 34963931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.