These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31645632)

  • 1. Dual Optical Signal-based Intraocular Pressure-sensing Principle Using Pressure-sensitive Mechanoluminescent ZnS:Cu/PDMS Soft Composite.
    Kim Y; Roy S; Jung GY; Oh JS; Kim GW
    Sci Rep; 2019 Oct; 9(1):15215. PubMed ID: 31645632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic response of intraocular pressure and biomechanical effects of the eye considering fluid-structure interaction.
    Salimi S; Park SS; Freiheit T
    J Biomech Eng; 2011 Sep; 133(9):091009. PubMed ID: 22010744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detailed methodology to model the Non Contact Tonometry: a Fluid Structure Interaction study.
    Redaelli E; Grasa J; Calvo B; Rodriguez Matas JF; Luraghi G
    Front Bioeng Biotechnol; 2022; 10():981665. PubMed ID: 36267451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mechanoluminescent ZnS:Cu/Rhodamine/SiO
    Sohn KS; Timilsina S; Singh SP; Lee JW; Kim JS
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34777-34783. PubMed ID: 27998116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid-Structure Interaction Based Algorithms for IOP and Corneal Material Behavior.
    Maklad O; Eliasy A; Chen KJ; Wang J; Abass A; Lopes BT; Theofilis V; Elsheikh A
    Front Bioeng Biotechnol; 2020; 8():970. PubMed ID: 32984273
    [No Abstract]   [Full Text] [Related]  

  • 6. A Wide-Range-Response Piezoresistive-Capacitive Dual-Sensing Breathable Sensor with Spherical-Shell Network of MWCNTs for Motion Detection and Language Assistance.
    Zhang S; Sun X; Guo X; Zhang J; Li H; Chen L; Wu J; Shi Y; Pan L
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model.
    Karimi A; Razaghi R; Navidbakhsh M; Sera T; Kudo S
    Technol Health Care; 2017; 25(2):285-297. PubMed ID: 27911345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of Air Puff Tonometry Test Using Arbitrary Lagrangian-Eulerian (ALE) Deforming Mesh for Corneal Material Characterisation.
    Maklad O; Eliasy A; Chen KJ; Theofilis V; Elsheikh A
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31861736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Impact of the Sclera on Corneal Deformation Response to an Air-Puff: A Finite-Element Study.
    Nguyen BA; Roberts CJ; Reilly MA
    Front Bioeng Biotechnol; 2018; 6():210. PubMed ID: 30687701
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of the eye globe design on biomechanical analysis.
    Issarti I; Koppen C; Rozema JJ
    Comput Biol Med; 2021 Aug; 135():104612. PubMed ID: 34261005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry.
    Maczynska E; Rzeszewska-Zamiara J; Jimenez Villar A; Wojtkowski M; Kaluzny BJ; Grulkowski I
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):1979-1986. PubMed ID: 31050724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes.
    Nguyen BA; Reilly MA; Roberts CJ
    Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid and structure coupling analysis of the interaction between aqueous humor and iris.
    Wang W; Qian X; Song H; Zhang M; Liu Z
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):133. PubMed ID: 28155692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study to determine the optimal intravitreal injection angle to the eye: A computational fluid-structure interaction model.
    Karimi A; Razaghi R; Biglari H; Sabbaghi H; Sera T; Kudo S
    Technol Health Care; 2018; 26(3):483-498. PubMed ID: 29710740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens.
    Leonardi M; Leuenberger P; Bertrand D; Bertsch A; Renaud P
    Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):3113-7. PubMed ID: 15326128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wearable contact lens sensor for noninvasive in-situ monitoring of intraocular pressure.
    Fan Y; Tu H; Zhao H; Wei F; Yang Y; Ren T
    Nanotechnology; 2021 Feb; 32(9):095106. PubMed ID: 33290267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft wearable contact lens sensor for continuous intraocular pressure monitoring.
    Chen GZ; Chan IS; Leung LK; Lam DC
    Med Eng Phys; 2014 Sep; 36(9):1134-9. PubMed ID: 25034639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the structural, optical and gas sensing properties of PANI coated Cu-ZnS microsphere composite.
    Parangusan H; Bhadra J; Ahmad Z; Mallick S; Touati F; Al-Thani N
    RSC Adv; 2020 Jul; 10(45):26604-26612. PubMed ID: 35515812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible and Optical Fiber Sensors Composited by Graphene and PDMS for Motion Detection.
    Wang D; Sheng B; Peng L; Huang Y; Ni Z
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31480491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.