These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Wu Y; Bao WS; Cao S; Chen F; Chen MC; Chen X; Chung TH; Deng H; Du Y; Fan D; Gong M; Guo C; Guo C; Guo S; Han L; Hong L; Huang HL; Huo YH; Li L; Li N; Li S; Li Y; Liang F; Lin C; Lin J; Qian H; Qiao D; Rong H; Su H; Sun L; Wang L; Wang S; Wu D; Xu Y; Yan K; Yang W; Yang Y; Ye Y; Yin J; Ying C; Yu J; Zha C; Zhang C; Zhang H; Zhang K; Zhang Y; Zhao H; Zhao Y; Zhou L; Zhu Q; Lu CY; Peng CZ; Zhu X; Pan JW Phys Rev Lett; 2021 Oct; 127(18):180501. PubMed ID: 34767433 [TBL] [Abstract][Full Text] [Related]
3. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Zhu Q; Cao S; Chen F; Chen MC; Chen X; Chung TH; Deng H; Du Y; Fan D; Gong M; Guo C; Guo C; Guo S; Han L; Hong L; Huang HL; Huo YH; Li L; Li N; Li S; Li Y; Liang F; Lin C; Lin J; Qian H; Qiao D; Rong H; Su H; Sun L; Wang L; Wang S; Wu D; Wu Y; Xu Y; Yan K; Yang W; Yang Y; Ye Y; Yin J; Ying C; Yu J; Zha C; Zhang C; Zhang H; Zhang K; Zhang Y; Zhao H; Zhao Y; Zhou L; Lu CY; Peng CZ; Zhu X; Pan JW Sci Bull (Beijing); 2022 Feb; 67(3):240-245. PubMed ID: 36546072 [TBL] [Abstract][Full Text] [Related]
5. Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits. Ying C; Cheng B; Zhao Y; Huang HL; Zhang YN; Gong M; Wu Y; Wang S; Liang F; Lin J; Xu Y; Deng H; Rong H; Peng CZ; Yung MH; Zhu X; Pan JW Phys Rev Lett; 2023 Mar; 130(11):110601. PubMed ID: 37001092 [TBL] [Abstract][Full Text] [Related]
6. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Gong M; Wang S; Zha C; Chen MC; Huang HL; Wu Y; Zhu Q; Zhao Y; Li S; Guo S; Qian H; Ye Y; Chen F; Ying C; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Zhang K; Cao S; Lin J; Xu Y; Sun L; Guo C; Li N; Liang F; Bastidas VM; Nemoto K; Munro WJ; Huo YH; Lu CY; Peng CZ; Zhu X; Pan JW Science; 2021 May; 372(6545):948-952. PubMed ID: 33958483 [TBL] [Abstract][Full Text] [Related]
7. Solving the Sampling Problem of the Sycamore Quantum Circuits. Pan F; Chen K; Zhang P Phys Rev Lett; 2022 Aug; 129(9):090502. PubMed ID: 36083655 [TBL] [Abstract][Full Text] [Related]
8. A dataset for quantum circuit mapping. Acampora G; Schiattarella R; Troiano A Data Brief; 2021 Dec; 39():107526. PubMed ID: 34805459 [TBL] [Abstract][Full Text] [Related]
9. Simulation of Quantum Circuits Using the Big-Batch Tensor Network Method. Pan F; Zhang P Phys Rev Lett; 2022 Jan; 128(3):030501. PubMed ID: 35119890 [TBL] [Abstract][Full Text] [Related]
10. Statistical Properties of Bit Strings Sampled from Sycamore Random Quantum Circuits. Oh S; Kais S J Phys Chem Lett; 2022 Aug; 13(32):7469-7475. PubMed ID: 35939529 [TBL] [Abstract][Full Text] [Related]
11. Quantum Computation of Conical Intersections on a Programmable Superconducting Quantum Processor. Zhao S; Tang D; Xiao X; Wang R; Sun Q; Chen Z; Cai X; Li Z; Yu H; Fang WH J Phys Chem Lett; 2024 Jul; 15(28):7244-7253. PubMed ID: 38976358 [TBL] [Abstract][Full Text] [Related]
12. A programmable two-qubit quantum processor in silicon. Watson TF; Philips SGJ; Kawakami E; Ward DR; Scarlino P; Veldhorst M; Savage DE; Lagally MG; Friesen M; Coppersmith SN; Eriksson MA; Vandersypen LMK Nature; 2018 Mar; 555(7698):633-637. PubMed ID: 29443962 [TBL] [Abstract][Full Text] [Related]
13. Error mitigation extends the computational reach of a noisy quantum processor. Kandala A; Temme K; Córcoles AD; Mezzacapo A; Chow JM; Gambetta JM Nature; 2019 Mar; 567(7749):491-495. PubMed ID: 30918370 [TBL] [Abstract][Full Text] [Related]
14. Efficient quantum walk on a quantum processor. Qiang X; Loke T; Montanaro A; Aungskunsiri K; Zhou X; O'Brien JL; Wang JB; Matthews JCF Nat Commun; 2016 May; 7():11511. PubMed ID: 27146471 [TBL] [Abstract][Full Text] [Related]
16. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Sillanpää MA; Park JI; Simmonds RW Nature; 2007 Sep; 449(7161):438-42. PubMed ID: 17898762 [TBL] [Abstract][Full Text] [Related]
17. Deep quantum neural networks on a superconducting processor. Pan X; Lu Z; Wang W; Hua Z; Xu Y; Li W; Cai W; Li X; Wang H; Song YP; Zou CL; Deng DL; Sun L Nat Commun; 2023 Jul; 14(1):4006. PubMed ID: 37414812 [TBL] [Abstract][Full Text] [Related]
18. Quantum computational advantage with a programmable photonic processor. Madsen LS; Laudenbach F; Askarani MF; Rortais F; Vincent T; Bulmer JFF; Miatto FM; Neuhaus L; Helt LG; Collins MJ; Lita AE; Gerrits T; Nam SW; Vaidya VD; Menotti M; Dhand I; Vernon Z; Quesada N; Lavoie J Nature; 2022 Jun; 606(7912):75-81. PubMed ID: 35650354 [TBL] [Abstract][Full Text] [Related]
19. Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. Gong M; Chen MC; Zheng Y; Wang S; Zha C; Deng H; Yan Z; Rong H; Wu Y; Li S; Chen F; Zhao Y; Liang F; Lin J; Xu Y; Guo C; Sun L; Castellano AD; Wang H; Peng C; Lu CY; Zhu X; Pan JW Phys Rev Lett; 2019 Mar; 122(11):110501. PubMed ID: 30951346 [TBL] [Abstract][Full Text] [Related]
20. Error-corrected quantum annealing with hundreds of qubits. Pudenz KL; Albash T; Lidar DA Nat Commun; 2014; 5():3243. PubMed ID: 24500027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]