These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31645996)

  • 1. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing.
    Krieger KJ; Bertollo N; Dangol M; Sheridan JT; Lowery MM; O'Cearbhaill ED
    Microsyst Nanoeng; 2019; 5():42. PubMed ID: 31645996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing.
    Choo S; Jin S; Jung J
    Pharmaceutics; 2022 Mar; 14(4):. PubMed ID: 35456599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of stereolithography 3D printing of microneedle micro-molds for ocular drug delivery.
    Fitaihi R; Abukhamees S; Chung SH; Craig DQM
    Int J Pharm; 2024 Jun; 658():124195. PubMed ID: 38703935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low cost additive manufacturing of microneedle masters.
    Johnson AR; Procopio AT
    3D Print Med; 2019 Feb; 5(1):2. PubMed ID: 30715677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid fabrication method of a microneedle mold with controllable needle height and width.
    Lin YH; Lee IC; Hsu WC; Hsu CH; Chang KP; Gao SS
    Biomed Microdevices; 2016 Oct; 18(5):85. PubMed ID: 27565822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fabrication method of microneedle molds with controlled microstructures.
    Wang QL; Zhu DD; Chen Y; Guo XD
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():135-42. PubMed ID: 27157736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of 3D Printing Tilt Angle on the Penetration of 3D-Printed Microneedle Arrays.
    Razzaghi M; Akbari M
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Customizable Fabrication of Photothermal Microneedles with Plasmonic Nanoparticles Using Low-Cost Stereolithography Three-Dimensional Printing.
    Ziesmer J; Sondén I; Venckute Larsson J; Merkl P; Sotiriou GA
    ACS Appl Bio Mater; 2024 Jul; 7(7):4533-4541. PubMed ID: 38877987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid fabrication of microneedles using magnetorheological drawing lithography.
    Chen Z; Ren L; Li J; Yao L; Chen Y; Liu B; Jiang L
    Acta Biomater; 2018 Jan; 65():283-291. PubMed ID: 29107057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method of microneedle array fabrication for transdermal drug delivery.
    Kochhar JS; Goh WJ; Chan SY; Kang L
    Drug Dev Ind Pharm; 2013 Feb; 39(2):299-309. PubMed ID: 22519721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, analysis and fabrication of solid polymer microneedle patch using CO
    Anbazhagan G; Suseela SB; Sankararajan R
    Drug Deliv Transl Res; 2023 Jun; 13(6):1813-1827. PubMed ID: 36807879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromolding of Amphotericin-B-Loaded Methoxyethylene-Maleic Anhydride Copolymer Microneedles.
    Azizi Machekposhti S; Nguyen AK; Vanderwal L; Stafslien S; Narayan RJ
    Pharmaceutics; 2022 Jul; 14(8):. PubMed ID: 35893806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production.
    Johnson AR; Caudill CL; Tumbleston JR; Bloomquist CJ; Moga KA; Ermoshkin A; Shirvanyants D; Mecham SJ; Luft JC; DeSimone JM
    PLoS One; 2016; 11(9):e0162518. PubMed ID: 27607247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems.
    Cordeiro AS; Tekko IA; Jomaa MH; Vora L; McAlister E; Volpe-Zanutto F; Nethery M; Baine PT; Mitchell N; McNeill DW; Donnelly RF
    Pharm Res; 2020 Aug; 37(9):174. PubMed ID: 32856172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable fabrication of microneedle arrays via spatially controlled UV exposure.
    Takahashi H; Jung Heo Y; Arakawa N; Kan T; Matsumoto K; Kawano R; Shimoyama I
    Microsyst Nanoeng; 2016; 2():16049. PubMed ID: 31057837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and optimization of 3D printed gelatin methacryloyl microneedle arrays based on vat photopolymerization.
    Baykara D; Bedir T; Ilhan E; Mutlu ME; Gunduz O; Narayan R; Ustundag CB
    Front Bioeng Biotechnol; 2023; 11():1157541. PubMed ID: 37251572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly robust approach to fabricate the mass-customizable mold of sharp-tipped biodegradable polymer microneedles for drug delivery.
    Lim H; Ha S; Bae M; Yoon SH
    Int J Pharm; 2021 May; 600():120475. PubMed ID: 33737092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for monolithic fabrication of polymer microneedles on a platform for transdermal drug delivery.
    Chaudhuri BP; Ceyssens F; Van Hoof C; Puers R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():156-9. PubMed ID: 24109648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of microneedle applications, materials, and fabrication methods.
    Faraji Rad Z; Prewett PD; Davies GJ
    Beilstein J Nanotechnol; 2021; 12():1034-1046. PubMed ID: 34621614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.
    Luzuriaga MA; Berry DR; Reagan JC; Smaldone RA; Gassensmith JJ
    Lab Chip; 2018 Apr; 18(8):1223-1230. PubMed ID: 29536070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.