BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31646047)

  • 1. Accurate tissue interface segmentation via adversarial pre-segmentation of anterior segment OCT images.
    Ouyang J; Mathai TS; Lathrop K; Galeotti J
    Biomed Opt Express; 2019 Oct; 10(10):5291-5324. PubMed ID: 31646047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DHNet: High-resolution and hierarchical network for cross-domain OCT speckle noise reduction.
    Zhou Y; Li J; Wang M; Peng Y; Chen Z; Zhu W; Shi F; Wang L; Wang T; Yao C; Chen X
    Med Phys; 2022 Sep; 49(9):5914-5928. PubMed ID: 35611567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speckle Noise Reduction for OCT Images Based on Image Style Transfer and Conditional GAN.
    Zhou Y; Yu K; Wang M; Ma Y; Peng Y; Chen Z; Zhu W; Shi F; Chen X
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):139-150. PubMed ID: 33882009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN.
    Ma Y; Chen X; Zhu W; Cheng X; Xiang D; Shi F
    Biomed Opt Express; 2018 Nov; 9(11):5129-5146. PubMed ID: 30460118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SeqCorr-EUNet: A sequence correction dual-flow network for segmentation and quantification of anterior segment OCT image.
    Fang J; Xing A; Chen Y; Zhou F
    Comput Biol Med; 2024 Mar; 171():108143. PubMed ID: 38364662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-task generative adversarial network for retinal optical coherence tomography image denoising.
    Xie Q; Ma Z; Zhu L; Fan F; Meng X; Gao X; Zhu J
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36137542
    [No Abstract]   [Full Text] [Related]  

  • 7. Employing texture loss to denoise OCT images using generative adversarial networks.
    Mehdizadeh M; Saha S; Alonso-Caneiro D; Kugelman J; MacNish C; Chen F
    Biomed Opt Express; 2024 Apr; 15(4):2262-2280. PubMed ID: 38633090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-Supervised Capsule cGAN for Speckle Noise Reduction in Retinal OCT Images.
    Wang M; Zhu W; Yu K; Chen Z; Shi F; Zhou Y; Ma Y; Peng Y; Bao D; Feng S; Ye L; Xiang D; Chen X
    IEEE Trans Med Imaging; 2021 Apr; 40(4):1168-1183. PubMed ID: 33395391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle reduction of OCT via super resolution reconstruction and its application on retinal layer segmentation.
    Yan Q; Chen B; Hu Y; Cheng J; Gong Y; Yang J; Liu J; Zhao Y
    Artif Intell Med; 2020 Jun; 106():101871. PubMed ID: 32593394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic volumetric speckle suppression in OCT using deep learning.
    Chintada BR; Ruiz-Lopera S; Restrepo R; Bouma BE; Villiger M; Uribe-Patarroyo N
    ArXiv; 2023 Dec; ():. PubMed ID: 38106457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography image denoising using a generative adversarial network with speckle modulation.
    Dong Z; Liu G; Ni G; Jerwick J; Duan L; Zhou C
    J Biophotonics; 2020 Apr; 13(4):e201960135. PubMed ID: 31970879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-aware optical coherence tomography image super-resolution via conditional generative adversarial neural network.
    Li X; Dong Z; Liu H; Kang-Mieler JJ; Ling Y; Gan Y
    ArXiv; 2023 Jul; ():. PubMed ID: 37502625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectual accuracy of OCT image retinal segmentation with the aid of speckle noise reduction and boundary edge detection strategy.
    Mittal P; Bhatnagar C
    J Microsc; 2023 Mar; 289(3):164-179. PubMed ID: 36373509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale denoising generative adversarial network for speckle reduction in optical coherence tomography images.
    Yu X; Ge C; Li M; Aziz MZ; Mo J; Fan Z
    J Med Imaging (Bellingham); 2023 Mar; 10(2):024006. PubMed ID: 37009058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-aware optical coherence tomography image super-resolution via conditional generative adversarial neural network.
    Li X; Dong Z; Liu H; Kang-Mieler JJ; Ling Y; Gan Y
    Biomed Opt Express; 2023 Oct; 14(10):5148-5161. PubMed ID: 37854579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inpainting Saturation Artifact in Anterior Segment Optical Coherence Tomography.
    Li J; Zhang H; Wang X; Wang H; Hao J; Bai G
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lens structure segmentation from AS-OCT images via shape-based learning.
    Fang H; Yin P; Chen H; Fang Y; Chen W; Yuan J; Risa H; Liu J; Xu Y
    Comput Methods Programs Biomed; 2023 Mar; 230():107322. PubMed ID: 36623332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid-structure network and network comparative study for deep-learning-based speckle-modulating optical coherence tomography.
    Ni G; Wu R; Zhong J; Chen Y; Wan L; Xie Y; Mei J; Liu Y
    Opt Express; 2022 May; 30(11):18919-18938. PubMed ID: 36221682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP).
    Wang YZ; Wu W; Birch DG
    Transl Vis Sci Technol; 2021 Nov; 10(13):9. PubMed ID: 34751740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.