These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 31646244)
1. Direct Catalytic Route to Biomass-Derived 2,5-Furandicarboxylic Acid and Its Use as Monomer in a Multicomponent Polymerization. Schade OR; Dannecker PK; Kalz KF; Steinbach D; Meier MAR; Grunwaldt JD ACS Omega; 2019 Oct; 4(16):16972-16979. PubMed ID: 31646244 [TBL] [Abstract][Full Text] [Related]
3. Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose. Motagamwala AH; Won W; Sener C; Alonso DM; Maravelias CT; Dumesic JA Sci Adv; 2018 Jan; 4(1):eaap9722. PubMed ID: 29372184 [TBL] [Abstract][Full Text] [Related]
4. Multistep Biooxidation of 5-(Hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid with H Swoboda A; Zwölfer S; Duhović Z; Bürgler M; Ebner K; Glieder A; Kroutil W ChemSusChem; 2024 Jun; 17(11):e202400156. PubMed ID: 38568785 [TBL] [Abstract][Full Text] [Related]
5. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid. Yi G; Teong SP; Li X; Zhang Y ChemSusChem; 2014 Aug; 7(8):2131-5. PubMed ID: 24889713 [TBL] [Abstract][Full Text] [Related]
6. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494 [TBL] [Abstract][Full Text] [Related]
7. Whole-cell synthesis of 2,5-furandicarboxylic acid from pineapple waste under various fermentation strategies. Omana Rajesh R; Shruthy NS; Akhila S; Krishnan Godan T; Dileep NR; César de Carvalho J; Porto de Souza Vandenberghe L; Ricardo Soccol C; Sindhu R; Binod P Bioresour Technol; 2023 Oct; 386():129545. PubMed ID: 37488015 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by a Syntrophic Consortium of Engineered Synechococcus elongatus and Pseudomonas putida. Lin TY; Wen RC; Shen CR; Tsai SL Biotechnol J; 2020 Jun; 15(6):e1900357. PubMed ID: 32181597 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of 2,5-furandicarboxylic acid by a TEMPO/laccase system coupled with Zou L; Zheng Z; Tan H; Xu Q; Ouyang J RSC Adv; 2020 Jun; 10(37):21781-21788. PubMed ID: 35516629 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based Cajnko MM; Novak U; Grilc M; Likozar B Biotechnol Biofuels; 2020; 13():66. PubMed ID: 32308735 [TBL] [Abstract][Full Text] [Related]
12. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural. Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609 [TBL] [Abstract][Full Text] [Related]
13. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural. Hossain GS; Yuan H; Li J; Shin HD; Wang M; Du G; Chen J; Liu L Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27795308 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial synthetic pathway fine-tuning and comparative transcriptomics for metabolic engineering of Raoultella ornithinolytica BF60 to efficiently synthesize 2,5-furandicarboxylic acid. Yuan H; Liu Y; Li J; Shin HD; Du G; Shi Z; Chen J; Liu L Biotechnol Bioeng; 2018 Sep; 115(9):2148-2155. PubMed ID: 29733430 [TBL] [Abstract][Full Text] [Related]
15. Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in Yuan H; Liu Y; Lv X; Li J; Du G; Shi Z; Liu L J Microbiol Biotechnol; 2018 Dec; 28(12):1999-2008. PubMed ID: 30661342 [TBL] [Abstract][Full Text] [Related]
16. Production of 2,5-furandicarboxylic acid Wadaugsorn K; Lin KY; Kaewchada A; Jaree A RSC Adv; 2022 Jun; 12(28):18084-18092. PubMed ID: 35800325 [TBL] [Abstract][Full Text] [Related]
17. Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids. Chen R; Xin J; Yan D; Dong H; Lu X; Zhang S ChemSusChem; 2019 Jun; 12(12):2715-2724. PubMed ID: 30908861 [TBL] [Abstract][Full Text] [Related]
18. Furandicarboxylic Acid (FDCA): Electrosynthesis and Its Facile Recovery From Polyethylene Furanoate (PEF) via Depolymerization. Dargó G; Kis D; Ráduly A; Farkas V; Kupai J ChemSusChem; 2024 Aug; ():e202401190. PubMed ID: 39213475 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation. Kubota SR; Choi KS ChemSusChem; 2018 Jul; 11(13):2138-2145. PubMed ID: 29905406 [TBL] [Abstract][Full Text] [Related]
20. Ultra-Dense Supported Ruthenium Oxide Clusters via Directed Ion Exchange for Efficient Valorization of 5-Hydroxymethylfurfural. Lei C; Chen Z; Jiang T; Wang S; Du W; Cha S; Hao Y; Wang R; Cao X; Gong M Angew Chem Int Ed Engl; 2024 May; 63(21):e202319642. PubMed ID: 38554014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]