BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31646309)

  • 21. Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators.
    Xu X; Hsieh YL
    Nanoscale; 2019 Jun; 11(24):11719-11729. PubMed ID: 31180404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Production of High-Quality Few-Layer Graphene Using a Simple Hydrodynamic-Assisted Exfoliation Method.
    Zhang Z; Jin H; Wu C; Ji J
    Nanoscale Res Lett; 2018 Dec; 13(1):416. PubMed ID: 30591976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.
    Haar S; Bruna M; Lian JX; Tomarchio F; Olivier Y; Mazzaro R; Morandi V; Moran J; Ferrari AC; Beljonne D; Ciesielski A; Samorì P
    J Phys Chem Lett; 2016 Jul; 7(14):2714-21. PubMed ID: 27349897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct Liquid Phase Exfoliation of Graphite to Produce Few-Layer Graphene by Microfluidization.
    Wang YZ; Chen T; Liu HH; Wang XC; Zhang XX
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2078-2086. PubMed ID: 30486950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of the Gemini Surfactants' Self-Assembly on Graphene Nanosheets: Insights from Molecular Dynamic Simulation.
    Poorsargol M; Sohrabi B; Dehestani M
    J Phys Chem A; 2018 Apr; 122(15):3873-3885. PubMed ID: 29580056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence study of the influence of centrifugation on graphene oxide dispersions in water and in tannic acid.
    Sainz-Urruela C; Vera-López S; Díez-Pascual AM; San Andrés MP
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121302. PubMed ID: 35525181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rationally designed surfactants for few-layered graphene exfoliation: ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers.
    Zhang L; Zhang Z; He C; Dai L; Liu J; Wang L
    ACS Nano; 2014 Jul; 8(7):6663-70. PubMed ID: 24968119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions.
    Lotya M; Hernandez Y; King PJ; Smith RJ; Nicolosi V; Karlsson LS; Blighe FM; De S; Wang Z; McGovern IT; Duesberg GS; Coleman JN
    J Am Chem Soc; 2009 Mar; 131(10):3611-20. PubMed ID: 19227978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct exfoliation of graphite in water with addition of ammonia solution.
    Ma H; Shen Z; Yi M; Ben S; Liang S; Liu L; Zhang Y; Zhang X; Ma S
    J Colloid Interface Sci; 2017 Oct; 503():68-75. PubMed ID: 28500941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-concentration, surfactant-stabilized graphene dispersions.
    Lotya M; King PJ; Khan U; De S; Coleman JN
    ACS Nano; 2010 Jun; 4(6):3155-62. PubMed ID: 20455583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials.
    Huang Y; Sutter E; Shi NN; Zheng J; Yang T; Englund D; Gao HJ; Sutter P
    ACS Nano; 2015 Nov; 9(11):10612-20. PubMed ID: 26336975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-assisted assembly of a histidine-rich lipidated peptide for simultaneous exfoliation of graphite and functionalization of graphene nanosheets.
    Zhang L; Sheng Y; Zehtab Yazdi A; Sarikhani K; Wang F; Jiang Y; Liu J; Zheng T; Wang W; Ouyang P; Chen P
    Nanoscale; 2019 Feb; 11(6):2999-3012. PubMed ID: 30698183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of solvent-exfoliation and stabilization of graphene with the assistance of compressed carbon dioxide and pyrene-polyethylene glycol.
    Xu X; Cai L; Zheng X; Xu Q
    Phys Chem Chem Phys; 2017 Jun; 19(24):16062-16070. PubMed ID: 28597889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure.
    Schlierf A; Yang H; Gebremedhn E; Treossi E; Ortolani L; Chen L; Minoia A; Morandi V; Samorì P; Casiraghi C; Beljonne D; Palermo V
    Nanoscale; 2013 May; 5(10):4205-16. PubMed ID: 23467481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.
    Wu L; Li W; Li P; Liao S; Qiu S; Chen M; Guo Y; Li Q; Zhu C; Liu L
    Small; 2014 Apr; 10(7):1421-9. PubMed ID: 24323826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.
    Kang J; Sangwan VK; Wood JD; Hersam MC
    Acc Chem Res; 2017 Apr; 50(4):943-951. PubMed ID: 28240855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dispersions of non-covalently functionalized graphene with minimal stabilizer.
    Parviz D; Das S; Ahmed HS; Irin F; Bhattacharia S; Green MJ
    ACS Nano; 2012 Oct; 6(10):8857-67. PubMed ID: 23002781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation.
    Zhao J; Wang Z; Zhao Q; Xing B
    Environ Sci Technol; 2014; 48(1):331-9. PubMed ID: 24328362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the nature of graphene-based films prepared by vacuum filtration of graphene dispersions.
    Yi M; Liang S; Liu L; Shen Z; Zheng Y; Zhang X; Ma S
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4969-75. PubMed ID: 24757968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.