These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 31646359)
21. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Ito S; D'Alessio AC; Taranova OV; Hong K; Sowers LC; Zhang Y Nature; 2010 Aug; 466(7310):1129-33. PubMed ID: 20639862 [TBL] [Abstract][Full Text] [Related]
22. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nakamura T; Liu YJ; Nakashima H; Umehara H; Inoue K; Matoba S; Tachibana M; Ogura A; Shinkai Y; Nakano T Nature; 2012 Jun; 486(7403):415-9. PubMed ID: 22722204 [TBL] [Abstract][Full Text] [Related]
23. The expression of TET3 regulated cell proliferation in HepG2 cells. Zhong X; Liu D; Hao Y; Li C; Hao J; Lin C; Shi S; Wang D Gene; 2019 May; 698():113-119. PubMed ID: 30836118 [TBL] [Abstract][Full Text] [Related]
24. TET proteins and 5-methylcytosine oxidation in hematological cancers. Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268 [TBL] [Abstract][Full Text] [Related]
25. Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Acurzio B; Verma A; Polito A; Giaccari C; Cecere F; Fioriniello S; Della Ragione F; Fico A; Cerrato F; Angelini C; Feil R; Riccio A Sci Rep; 2021 Jul; 11(1):13802. PubMed ID: 34226608 [TBL] [Abstract][Full Text] [Related]
26. Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Hahn MA; Qiu R; Wu X; Li AX; Zhang H; Wang J; Jui J; Jin SG; Jiang Y; Pfeifer GP; Lu Q Cell Rep; 2013 Feb; 3(2):291-300. PubMed ID: 23403289 [TBL] [Abstract][Full Text] [Related]
27. Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells. Grosser C; Wagner N; Grothaus K; Horsthemke B Epigenetics; 2015; 10(9):819-33. PubMed ID: 26186463 [TBL] [Abstract][Full Text] [Related]
28. Tet2- and Tet3- Mediated Cytosine Hydroxymethylation in Six2 Progenitor Cells in Mice Is Critical for Nephron Progenitor Differentiation and Nephron Endowment. Liang X; Aranyi T; Zhou J; Guan Y; Hu H; Liu H; Susztak K J Am Soc Nephrol; 2023 Apr; 34(4):572-589. PubMed ID: 36522157 [TBL] [Abstract][Full Text] [Related]
29. Oxygen gradients can determine epigenetic asymmetry and cellular differentiation via differential regulation of Tet activity in embryonic stem cells. Burr S; Caldwell A; Chong M; Beretta M; Metcalf S; Hancock M; Arno M; Balu S; Kropf VL; Mistry RK; Shah AM; Mann GE; Brewer AC Nucleic Acids Res; 2018 Feb; 46(3):1210-1226. PubMed ID: 29186571 [TBL] [Abstract][Full Text] [Related]
30. Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Inoue A; Matoba S; Zhang Y Cell Res; 2012 Dec; 22(12):1640-9. PubMed ID: 23184059 [TBL] [Abstract][Full Text] [Related]
31. TET3 Mediates Alterations in the Epigenetic Marker 5hmC and Akt pathway in Steroid-Associated Osteonecrosis. Zhao J; Ma XL; Ma JX; Sun L; Lu B; Wang Y; Xing GS; Wang Y; Dong BC; Xu LY; Kuang MJ; Fu L; Bai HH; Ma Y; Jin WL J Bone Miner Res; 2017 Feb; 32(2):319-332. PubMed ID: 27627619 [TBL] [Abstract][Full Text] [Related]
32. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dawlaty MM; Breiling A; Le T; Raddatz G; Barrasa MI; Cheng AW; Gao Q; Powell BE; Li Z; Xu M; Faull KF; Lyko F; Jaenisch R Dev Cell; 2013 Feb; 24(3):310-23. PubMed ID: 23352810 [TBL] [Abstract][Full Text] [Related]
33. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Gu T; Lin X; Cullen SM; Luo M; Jeong M; Estecio M; Shen J; Hardikar S; Sun D; Su J; Rux D; Guzman A; Lee M; Qi LS; Chen JJ; Kyba M; Huang Y; Chen T; Li W; Goodell MA Genome Biol; 2018 Jul; 19(1):88. PubMed ID: 30001199 [TBL] [Abstract][Full Text] [Related]
34. Loss of Tet hydroxymethylase activity causes mouse embryonic stem cell differentiation bias and developmental defects. Wang M; Wang L; Huang Y; Qiao Z; Yi S; Zhang W; Wang J; Yang G; Cui X; Kou X; Zhao Y; Wang H; Jiang C; Gao S; Chen J Sci China Life Sci; 2024 Oct; 67(10):2132-2148. PubMed ID: 39037697 [TBL] [Abstract][Full Text] [Related]
35. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they? Santiago M; Antunes C; Guedes M; Sousa N; Marques CJ Genomics; 2014 Nov; 104(5):334-40. PubMed ID: 25200796 [TBL] [Abstract][Full Text] [Related]
36. TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Perera A; Eisen D; Wagner M; Laube SK; Künzel AF; Koch S; Steinbacher J; Schulze E; Splith V; Mittermeier N; Müller M; Biel M; Carell T; Michalakis S Cell Rep; 2015 Apr; 11(2):283-94. PubMed ID: 25843715 [TBL] [Abstract][Full Text] [Related]
37. Dynamic expression of TET1, TET2, and TET3 dioxygenases in mouse and human placentas throughout gestation. Rakoczy J; Padmanabhan N; Krzak AM; Kieckbusch J; Cindrova-Davies T; Watson ED Placenta; 2017 Nov; 59():46-56. PubMed ID: 29108636 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. Kang J; Lienhard M; Pastor WA; Chawla A; Novotny M; Tsagaratou A; Lasken RS; Thompson EC; Surani MA; Koralov SB; Kalantry S; Chavez L; Rao A Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4236-45. PubMed ID: 26199412 [TBL] [Abstract][Full Text] [Related]