BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

949 related articles for article (PubMed ID: 31646613)

  • 1. Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands.
    Charles SP; Kominoski JS; Armitage AR; Guo H; Weaver CA; Pennings SC
    Ecology; 2020 Feb; 101(2):e02916. PubMed ID: 31646613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hurricane alters the relationship between mangrove cover and marine subsidies.
    Peng D; Montelongo DC; Wu L; Armitage AR; Kominoski JS; Pennings SC
    Ecology; 2022 May; 103(5):e3662. PubMed ID: 35157321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.
    Guo H; Zhang Y; Lan Z; Pennings SC
    Glob Chang Biol; 2013 Sep; 19(9):2765-74. PubMed ID: 23580161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover.
    Guo H; Weaver C; Charles SP; Whitt A; Dastidar S; D'Odorico P; Fuentes JD; Kominoski JS; Armitage AR; Pennings SC
    Ecology; 2017 Mar; 98(3):762-772. PubMed ID: 27984665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics.
    Xia S; Wang W; Song Z; Kuzyakov Y; Guo L; Van Zwieten L; Li Q; Hartley IP; Yang Y; Wang Y; Andrew Quine T; Liu C; Wang H
    Glob Chang Biol; 2021 Apr; 27(8):1627-1644. PubMed ID: 33432697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.
    Osland MJ; Day RH; Larriviere JC; From AS
    PLoS One; 2014; 9(6):e99604. PubMed ID: 24971938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes.
    Kelleway JJ; Saintilan N; Macreadie PI; Skilbeck CG; Zawadzki A; Ralph PJ
    Glob Chang Biol; 2016 Mar; 22(3):1097-109. PubMed ID: 26670941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.
    Yando ES; Osland MJ; Hester MW
    Oecologia; 2018 May; 187(1):319-331. PubMed ID: 29497834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt Marsh Plant Community Structure Influences Success of
    Adgie TE; Chapman SK
    Wetlands (Wilmington); 2021; 41(6):82. PubMed ID: 34393321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mangrove growth response to experimental warming is greatest near the range limit in northeast Florida.
    Chapman SK; Feller IC; Canas G; Hayes MA; Dix N; Hester M; Morris J; Langley JA
    Ecology; 2021 Jun; 102(6):e03320. PubMed ID: 33665838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mangrove cover on coastal erosion during a hurricane in Texas, USA.
    Pennings SC; Glazner RM; Hughes ZJ; Kominoski JS; Armitage AR
    Ecology; 2021 Apr; 102(4):e03309. PubMed ID: 33576002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.
    Weaver CA; Armitage AR
    PLoS One; 2018; 13(3):e0193617. PubMed ID: 29494657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate and plant controls on soil organic matter in coastal wetlands.
    Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB
    Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.
    Coldren GA; Barreto CR; Wykoff DD; Morrissey EM; Langley JA; Feller IC; Chapman SK
    Ecology; 2016 Nov; 97(11):3167-3175. PubMed ID: 27870028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of "blue carbon" storage by mangrove ageing: Evidence from a 66-year chronosequence in French Guiana.
    Walcker R; Gandois L; Proisy C; Corenblit D; Mougin É; Laplanche C; Ray R; Fromard F
    Glob Chang Biol; 2018 Jun; 24(6):2325-2338. PubMed ID: 29474752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative outcomes of novel trophic interactions along mangrove range edges.
    Goeke JA; Foster EM; Armitage AR
    Ecology; 2023 Jun; 104(6):e4051. PubMed ID: 37042422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replacement of oyster reefs by mangroves: Unexpected climate-driven ecosystem shifts.
    McClenachan G; Witt M; Walters LJ
    Glob Chang Biol; 2021 Mar; 27(6):1226-1238. PubMed ID: 33342009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mangrove expansion and salt marsh decline at mangrove poleward limits.
    Saintilan N; Wilson NC; Rogers K; Rajkaran A; Krauss KW
    Glob Chang Biol; 2014 Jan; 20(1):147-57. PubMed ID: 23907934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.
    Armitage AR; Highfield WE; Brody SD; Louchouarn P
    PLoS One; 2015; 10(5):e0125404. PubMed ID: 25946132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.