These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31646867)

  • 1. Ternary Zn(II) Complexes of Fluorescent Zinc Probes Zinpyr-1 and Zinbo-5 with the Low Molecular Weight Component of Exchangeable Cellular Zinc Pool.
    Marszałek I; Goch W; Bal W
    Inorg Chem; 2019 Nov; 58(21):14741-14751. PubMed ID: 31646867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary Zn(II) Complexes of FluoZin-3 and the Low Molecular Weight Component of the Exchangeable Cellular Zinc Pool.
    Marszałek I; Goch W; Bal W
    Inorg Chem; 2018 Aug; 57(16):9826-9838. PubMed ID: 30088924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ternary complex formation and competition quench fluorescence of ZnAF family zinc sensors.
    Staszewska A; Kurowska E; Bal W
    Metallomics; 2013 Nov; 5(11):1483-90. PubMed ID: 23939683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution.
    Burdette SC; Walkup GK; Spingler B; Tsien RY; Lippard SJ
    J Am Chem Soc; 2001 Aug; 123(32):7831-41. PubMed ID: 11493056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.
    Nowakowski AB; Meeusen JW; Menden H; Tomasiewicz H; Petering DH
    Inorg Chem; 2015 Dec; 54(24):11637-47. PubMed ID: 26650477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZP4, an improved neuronal Zn2+ sensor of the Zinpyr family.
    Burdette SC; Frederickson CJ; Bu W; Lippard SJ
    J Am Chem Soc; 2003 Feb; 125(7):1778-87. PubMed ID: 12580603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding zinc quantification with existing and advanced ditopic fluorescent Zinpyr sensors.
    Buccella D; Horowitz JA; Lippard SJ
    J Am Chem Soc; 2011 Mar; 133(11):4101-14. PubMed ID: 21351756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences.
    Marszałek I; Krężel A; Goch W; Zhukov I; Paczkowska I; Bal W
    J Inorg Biochem; 2016 Aug; 161():107-14. PubMed ID: 27216451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Midrange affinity fluorescent Zn(II) sensors of the Zinpyr family: syntheses, characterization, and biological imaging applications.
    Nolan EM; Jaworski J; Racine ME; Sheng M; Lippard SJ
    Inorg Chem; 2006 Nov; 45(24):9748-57. PubMed ID: 17112271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras.
    Evers TH; Appelhof MA; de Graaf-Heuvelmans PT; Meijer EW; Merkx M
    J Mol Biol; 2007 Nov; 374(2):411-25. PubMed ID: 17936298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QZ1 and QZ2: rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn(II).
    Nolan EM; Jaworski J; Okamoto K; Hayashi Y; Sheng M; Lippard SJ
    J Am Chem Soc; 2005 Dec; 127(48):16812-23. PubMed ID: 16316228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 6-methylpyridyl for pyridyl substitution tunes the properties of fluorescent zinc sensors of the Zinpyr family.
    Goldsmith CR; Lippard SJ
    Inorg Chem; 2006 Jan; 45(2):555-61. PubMed ID: 16411690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Three Low-Molecular-Weight Fluorescent Probes for Measuring Free Zinc Levels in Cultured Mammary Cells.
    Hübner C; Keil C; Jürgensen A; Barthel L; Haase H
    Nutrients; 2023 Apr; 15(8):. PubMed ID: 37111093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry.
    Nolan EM; Lippard SJ
    Acc Chem Res; 2009 Jan; 42(1):193-203. PubMed ID: 18989940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules.
    Maret W
    Metallomics; 2015 Feb; 7(2):202-11. PubMed ID: 25362967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtle modification of 2,2-dipicolylamine lowers the affinity and improves the turn-on of Zn(II)-selective fluorescent sensors.
    Wong BA; Friedle S; Lippard SJ
    Inorg Chem; 2009 Aug; 48(15):7009-11. PubMed ID: 19572729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The zinspy family of fluorescent zinc sensors: syntheses and spectroscopic investigations.
    Nolan EM; Lippard SJ
    Inorg Chem; 2004 Dec; 43(26):8310-7. PubMed ID: 15606177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Zinpyr-1 for the investigation of zinc signals in Escherichia coli.
    Haase H; Hebel S; Engelhardt G; Rink L
    Biometals; 2013 Feb; 26(1):167-77. PubMed ID: 23324851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZP8, a neuronal zinc sensor with improved dynamic range; imaging zinc in hippocampal slices with two-photon microscopy.
    Chang CJ; Nolan EM; Jaworski J; Okamoto K; Hayashi Y; Sheng M; Lippard SJ
    Inorg Chem; 2004 Oct; 43(21):6774-9. PubMed ID: 15476377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Second-generation photocage for Zn2+ inspired by TPEN: characterization and insight into the uncaging quantum yields of ZinCleav chelators.
    Bandara HM; Walsh TP; Burdette SC
    Chemistry; 2011 Mar; 17(14):3932-41. PubMed ID: 21365693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.