BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31646868)

  • 1. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size.
    Dietzel D; Brndiar J; Štich I; Schirmeisen A
    ACS Nano; 2017 Aug; 11(8):7642-7647. PubMed ID: 28715171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Prediction of Superlubric Layered Heterojunctions.
    Gao E; Wu B; Wang Y; Jia X; Ouyang W; Liu Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33600-33608. PubMed ID: 34213300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Amorphous-Crystalline Phase Transition on Superlubric Sliding.
    Cihan E; Dietzel D; Jany BR; Schirmeisen A
    Phys Rev Lett; 2023 Mar; 130(12):126205. PubMed ID: 37027841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Superlubricity Based on Crystalline Materials.
    Song Y; Qu C; Ma M; Zheng Q
    Small; 2020 Apr; 16(15):e1903018. PubMed ID: 31670482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate.
    Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J
    Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural superlubricity in 2D van der Waals heterojunctions.
    Yuan J; Yang R; Zhang G
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34229304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
    Liu SW; Wang HP; Xu Q; Ma TB; Yu G; Zhang C; Geng D; Yu Z; Zhang S; Wang W; Hu YZ; Wang H; Luo J
    Nat Commun; 2017 Feb; 8():14029. PubMed ID: 28195130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a Microscale Superlubric Graphite Interface.
    Wang K; Qu C; Wang J; Quan B; Zheng Q
    Phys Rev Lett; 2020 Jul; 125(2):026101. PubMed ID: 32701344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superlubricity of Materials: Progress, Potential, and Challenges.
    Ramezani M; Ripin ZM; Jiang CP; Pasang T
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable, Wide-Temperature, and Macroscale Superlubricity Enabled by Nanoscale Van Der Waals Heterojunction-to-Homojunction Transformation.
    Yang X; Li R; Wang Y; Zhang J
    Adv Mater; 2023 Sep; 35(39):e2303580. PubMed ID: 37354130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.