These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31646868)

  • 41. Structural superlubricity and ultralow friction across the length scales.
    Hod O; Meyer E; Zheng Q; Urbakh M
    Nature; 2018 Nov; 563(7732):485-492. PubMed ID: 30464268
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superlubricity of graphite.
    Dienwiebel M; Verhoeven GS; Pradeep N; Frenken JW; Heimberg JA; Zandbergen HW
    Phys Rev Lett; 2004 Mar; 92(12):126101. PubMed ID: 15089689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural superlubricity in graphite flakes assembled under ambient conditions.
    Deng H; Ma M; Song Y; He Q; Zheng Q
    Nanoscale; 2018 Jul; 10(29):14314-14320. PubMed ID: 30019038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Negative or Positive? Loading Area Dependent Correlation Between Friction and Normal Load in Structural Superlubricity.
    Wang K; Wang J; Ma M
    Front Chem; 2021; 9():807630. PubMed ID: 35178378
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical modeling of structural superlubricity in rotated bilayer graphene, hexagonal boron nitride, molybdenum disulfide, and blue phosphorene.
    Kabengele T; Johnson ER
    Nanoscale; 2021 Sep; 13(34):14399-14407. PubMed ID: 34473160
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Macroscale Superlubricity on Nanoscale Graphene Moiré Structure-Assembled Surface via Counterface Hydrogen Modulation.
    Wang Y; Yang X; Liang H; Zhao J; Zhang J
    Adv Sci (Weinh); 2024 May; 11(19):e2309701. PubMed ID: 38483889
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomistic Mechanism of Friction-Force Independence on the Normal Load and Other Friction Laws for Dynamic Structural Superlubricity.
    Brilliantov NV; Tsukanov AA; Grebenko AK; Nasibulin AG; Ostanin IA
    Phys Rev Lett; 2023 Dec; 131(26):266201. PubMed ID: 38215361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fully automatic transfer and measurement system for structural superlubric materials.
    Chen L; Lin C; Shi D; Huang X; Zheng Q; Nie J; Ma M
    Nat Commun; 2023 Oct; 14(1):6323. PubMed ID: 37816725
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The registry index: a quantitative measure of materials' interfacial commensurability.
    Hod O
    Chemphyschem; 2013 Aug; 14(11):2376-91. PubMed ID: 23780640
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unraveling the Friction Evolution Mechanism of Diamond-Like Carbon Film during Nanoscale Running-In Process toward Superlubricity.
    Wang K; Zhang J; Ma T; Liu Y; Song A; Chen X; Hu Y; Carpick RW; Luo J
    Small; 2021 Jan; 17(1):e2005607. PubMed ID: 33284504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing structural superlubricity of two-dimensional water transport with atomic resolution.
    Wu D; Zhao Z; Lin B; Song Y; Qi J; Jiang J; Yuan Z; Cheng B; Zhao M; Tian Y; Wang Z; Wu M; Bian K; Liu KH; Xu LM; Zeng XC; Wang EG; Jiang Y
    Science; 2024 Jun; 384(6701):1254-1259. PubMed ID: 38870285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrahigh Critical Current Density across Sliding Electrical Contacts in Structural Superlubric State.
    Wu T; Chen W; Wangye L; Wang Y; Wu Z; Ma M; Zheng Q
    Phys Rev Lett; 2024 Mar; 132(9):096201. PubMed ID: 38489654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Macroscale Superlubricity and Polymorphism of Long-Chain
    Reddyhoff T; Ewen JP; Deshpande P; Frogley MD; Welch MD; Montgomery W
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9239-9251. PubMed ID: 33565870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol.
    Ge X; Li J; Luo R; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rotational Instability in Superlubric Joints.
    Qu C; Shi S; Ma M; Zheng Q
    Phys Rev Lett; 2019 Jun; 122(24):246101. PubMed ID: 31322388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superlubricity of graphene nanoribbons on gold surfaces.
    Kawai S; Benassi A; Gnecco E; Söde H; Pawlak R; Feng X; Müllen K; Passerone D; Pignedoli CA; Ruffieux P; Fasel R; Meyer E
    Science; 2016 Feb; 351(6276):957-61. PubMed ID: 26917767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Friction fluctuations of gold nanoparticles in the superlubric regime.
    Dietzel D; Wijn AS; Vorholzer M; Schirmeisen A
    Nanotechnology; 2018 Apr; 29(15):155702. PubMed ID: 29460852
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissipation from Interlayer Friction in Graphene Nanoelectromechanical Resonators.
    Ferrari PF; Kim S; van der Zande AM
    Nano Lett; 2021 Oct; 21(19):8058-8065. PubMed ID: 34559536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Achieving a superlubricating ohmic sliding electrical contact via a 2D heterointerface: a computational investigation.
    Song A; Gao L; Zhang J; Liu X; Hu YZ; Ma TB; Zheng Q; Luo J
    Nanoscale; 2020 Apr; 12(14):7857-7863. PubMed ID: 32227006
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strain Engineering Modulates Graphene Interlayer Friction by Moiré Pattern Evolution.
    Wang K; Qu C; Wang J; Ouyang W; Ma M; Zheng Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36169-36176. PubMed ID: 31486630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.