These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 31646986)

  • 41. Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.): a transcriptomic approach.
    R V S; Kumari P; Rupwate SD; Rajasekharan R; Srinivasan M
    PLoS One; 2015; 10(4):e0123580. PubMed ID: 25875809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptomic profiling of two Pak Choi varieties with contrasting anthocyanin contents provides an insight into structural and regulatory genes in anthocyanin biosynthetic pathway.
    Zhang L; Xu B; Wu T; Yang Y; Fan L; Wen M; Sui J
    BMC Genomics; 2017 Apr; 18(1):288. PubMed ID: 28399809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.).
    Xu L; Wang Y; Zhang F; Tang M; Chen Y; Wang J; Karanja BK; Luo X; Zhang W; Liu L
    Plant Cell Physiol; 2017 Nov; 58(11):1901-1913. PubMed ID: 29016946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accumulation of anthocyanin and associated gene expression in radish sprouts exposed to light and methyl jasmonate.
    Park WT; Kim YB; Seo JM; Kim SJ; Chung E; Lee JH; Park SU
    J Agric Food Chem; 2013 May; 61(17):4127-32. PubMed ID: 23560394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide identification and expression pattern analysis of the MATE gene family in carmine radish (Raphanus sativus L.).
    Zheng Z; Gao J; Wang C; Peng H; Zeng J; Chen F
    Gene; 2023 Dec; 887():147734. PubMed ID: 37625557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative transcriptome analysis reveals key genes associated with pigmentation in radish (Raphanus sativus L.) skin and flesh.
    Zhang J; Zhao J; Tan Q; Qiu X; Mei S
    Sci Rep; 2021 Jun; 11(1):11434. PubMed ID: 34075070
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolome and Transcriptome Sequencing Analysis Reveals Anthocyanin Metabolism in Pink Flowers of Anthocyanin-Rich Tea (
    Rothenberg DO; Yang H; Chen M; Zhang W; Zhang L
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30889908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation.
    Jin SW; Rahim MA; Afrin KS; Park JI; Kang JG; Nou IS
    BMC Genomics; 2018 Nov; 19(1):797. PubMed ID: 30400854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish.
    Xu Y; Zhu X; Chen Y; Gong Y; Liu L
    Plant Physiol Biochem; 2013 Sep; 70():269-77. PubMed ID: 23800662
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative analysis of full-length transcriptomes based on hybrid population reveals regulatory mechanisms of anthocyanin biosynthesis in sweet potato (Ipomoea batatas (L.) Lam).
    Qin Z; Hou F; Li A; Dong S; Huang C; Wang Q; Zhang L
    BMC Plant Biol; 2020 Jun; 20(1):299. PubMed ID: 32600332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Luo X; Zhu X; Kinuthia KB; Nie S; Feng H; Li C; Liu L
    Plant Cell Rep; 2016 Feb; 35(2):329-46. PubMed ID: 26518430
    [TBL] [Abstract][Full Text] [Related]  

  • 52. De novo sequencing and analysis of Lophophora williamsii transcriptome, and searching for putative genes involved in mescaline biosynthesis.
    Ibarra-Laclette E; Zamudio-Hernández F; Pérez-Torres CA; Albert VA; Ramírez-Chávez E; Molina-Torres J; Fernández-Cortes A; Calderón-Vázquez C; Olivares-Romero JL; Herrera-Estrella A; Herrera-Estrella L
    BMC Genomics; 2015 Sep; 16(1):657. PubMed ID: 26330142
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovery of genes involved in anthocyanin biosynthesis from the rind and pith of three sugarcane varieties using integrated metabolic profiling and RNA-seq analysis.
    Ni Y; Chen H; Liu D; Zeng L; Chen P; Liu C
    BMC Plant Biol; 2021 May; 21(1):214. PubMed ID: 33980175
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.).
    Wei H; Chen X; Zong X; Shu H; Gao D; Liu Q
    PLoS One; 2015; 10(3):e0121164. PubMed ID: 25799516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combined widely targeted metabolomics and transcriptomics analysis reveals differentially accumulated metabolites and the underlying molecular bases in fleshy taproots of distinct radish genotypes.
    Liu T; Liu T; Zhang X; Song J; Qiu Y; Yang W; Jia H; Wang H; Li X
    Plant Physiol Biochem; 2023 Feb; 195():351-361. PubMed ID: 36681065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular Regulatory Network of Anthocyanin Accumulation in Black Radish Skin as Revealed by Transcriptome and Metabonome Analysis.
    Zhang J; Zhang ZX; Wen BY; Jiang YJ; He X; Bai R; Zhang XL; Chai WC; Xu XY; Xu J; Hou LP; Li ML
    Int J Mol Sci; 2023 Sep; 24(17):. PubMed ID: 37686469
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide identification of microRNAs associated with taproot development in radish (Raphanus sativus L.).
    Sun Y; Qiu Y; Zhang X; Chen X; Shen D; Wang H; Li X
    Gene; 2015 Sep; 569(1):118-26. PubMed ID: 26013046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids.
    Li H; Dong Y; Yang J; Liu X; Wang Y; Yao N; Guan L; Wang N; Wu J; Li X
    PLoS One; 2012; 7(2):e30987. PubMed ID: 22363528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish.
    Wang Q; Wang Y; Sun H; Sun L; Zhang L
    J Exp Bot; 2020 May; 71(9):2537-2550. PubMed ID: 31961436
    [TBL] [Abstract][Full Text] [Related]  

  • 60. De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin V in Celastrus angulatus maxim.
    Li W; Xu R; Yan X; Liang D; Zhang L; Qin X; Caiyin Q; Zhao G; Xiao W; Hu Z; Qiao J
    BMC Genomics; 2019 Jan; 20(1):7. PubMed ID: 30611193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.