These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31647083)

  • 1. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries.
    Zhang L; Qian T; Zhu X; Hu Z; Wang M; Zhang L; Jiang T; Tian JH; Yan C
    Chem Soc Rev; 2019 Nov; 48(22):5432-5453. PubMed ID: 31647083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: a review.
    Tan J; Liu D; Xu X; Mai L
    Nanoscale; 2017 Dec; 9(48):19001-19016. PubMed ID: 29185576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Nanocrystal CoS
    Ai G; Hu Q; Zhang L; Dai K; Wang J; Xu Z; Huang Y; Zhang B; Li D; Zhang T; Liu G; Mao W
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33987-33999. PubMed ID: 31448888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.
    Zhang S; Ikoma A; Li Z; Ueno K; Ma X; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27803-27813. PubMed ID: 27668510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium Bond Chemistry in Lithium-Sulfur Batteries.
    Hou TZ; Xu WT; Chen X; Peng HJ; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8178-8182. PubMed ID: 28520218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.
    Liu M; Ren Y; Zhou D; Jiang H; Kang F; Zhao T
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2526-2534. PubMed ID: 28026937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects.
    Fang R; Zhao S; Sun Z; Wang DW; Cheng HM; Li F
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28380284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium-Sulfur Batteries.
    Shen J; Xu X; Liu J; Liu Z; Li F; Hu R; Liu J; Hou X; Feng Y; Yu Y; Zhu M
    ACS Nano; 2019 Aug; 13(8):8986-8996. PubMed ID: 31356051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li-S Batteries.
    Song Y; Zhao S; Chen Y; Cai J; Li J; Yang Q; Sun J; Liu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5687-5694. PubMed ID: 30714710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.
    Eshetu GG; Judez X; Li C; Bondarchuk O; Rodriguez-Martinez LM; Zhang H; Armand M
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15368-15372. PubMed ID: 28994228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Electrochemical Kinetics and Polysulfide Traps of Indium Nitride for Highly Stable Lithium-Sulfur Batteries.
    Zhang L; Chen X; Wan F; Niu Z; Wang Y; Zhang Q; Chen J
    ACS Nano; 2018 Sep; 12(9):9578-9586. PubMed ID: 30199634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique.
    Xiao J; Hu JZ; Chen H; Vijayakumar M; Zheng J; Pan H; Walter ED; Hu M; Deng X; Feng J; Liaw BY; Gu M; Deng ZD; Lu D; Xu S; Wang C; Liu J
    Nano Lett; 2015 May; 15(5):3309-16. PubMed ID: 25785550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries.
    Shen X; Qian T; Chen P; Liu J; Wang M; Yan C
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30058-30064. PubMed ID: 30136847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dithiothreitol-assisted polysulfide reduction in the interlayer of lithium-sulfur batteries: a first-principles study.
    Liu J; Li M; Zhang X; Zhang Q; Yan J; Wu Y
    Phys Chem Chem Phys; 2019 Jul; 21(30):16435-16443. PubMed ID: 31086879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research Progress toward the Practical Applications of Lithium-Sulfur Batteries.
    Lochala J; Liu D; Wu B; Robinson C; Xiao J
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24407-24421. PubMed ID: 28617586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.