BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31647102)

  • 1. Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering.
    Zheng Y; Han J; Wang B; Hu X; Li R; Shen W; Ma X; Ma L; Yi L; Yang S; Peng W
    Nucleic Acids Res; 2019 Dec; 47(21):11461-11475. PubMed ID: 31647102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis.
    Shen W; Zhang J; Geng B; Qiu M; Hu M; Yang Q; Bao W; Xiao Y; Zheng Y; Peng W; Zhang G; Ma L; Yang S
    Microb Cell Fact; 2019 Oct; 18(1):162. PubMed ID: 31581942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a counterselectable system for rapid and efficient CRISPR-based genome engineering in Zymomonas mobilis.
    Zheng Y; Fu H; Chen J; Li J; Bian Y; Hu P; Lei L; Liu Y; Yang J; Peng W
    Microb Cell Fact; 2023 Oct; 22(1):208. PubMed ID: 37833755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of editing plasmid mediated by theophylline riboswitch in Zymomonas mobilis.
    Huang Y; Chen M; Hu G; Wu B; He M
    Appl Microbiol Biotechnol; 2023 Dec; 107(23):7151-7163. PubMed ID: 37728624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis.
    Wang X; Wu B; Sui X; Zhang Z; Liu T; Li Y; Hu G; He M; Peng N
    J Genet Genomics; 2021 Feb; 48(2):115-122. PubMed ID: 33958317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Mobilization of Foreign DNA into Zymomonas mobilis Strain ZM4 by Removal of Multiple Restriction Systems.
    Lal PB; Wells F; Myers KS; Banerjee R; Guss AM; Kiley PJ
    Appl Environ Microbiol; 2021 Sep; 87(19):e0080821. PubMed ID: 34288704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of a transient CRISPR-Cas9 genome editing system in Candida glycerinogenes for co-production of ethanol and xylonic acid.
    Zhu M; Sun L; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2019 Sep; 128(3):283-289. PubMed ID: 30967334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules.
    Singh R; Chandel S; Ghosh A; Dey D; Chakravarti R; Roy S; Ravichandiran V; Ghosh D
    Mol Biotechnol; 2021 Jun; 63(6):459-476. PubMed ID: 33774733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas-based genome engineering in natural product discovery.
    Tong Y; Weber T; Lee SY
    Nat Prod Rep; 2019 Sep; 36(9):1262-1280. PubMed ID: 30548045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.
    Wolf T; Gren T; Thieme E; Wibberg D; Zemke T; Pühler A; Kalinowski J
    J Biotechnol; 2016 Aug; 231():122-128. PubMed ID: 27262504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous CRISPR-assisted microhomology-mediated end joining enables rapid genome editing in Zymomonas mobilis.
    Sui X; Wang X; Liu T; Ye Q; Wu B; Hu G; Yang S; He M; Peng N
    Biotechnol Biofuels; 2021 Oct; 14(1):208. PubMed ID: 34689795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repurposing the Endogenous Type I-E CRISPR/Cas System for Gene Repression in
    Qin Z; Yang Y; Yu S; Liu L; Chen Y; Chen J; Zhou J
    ACS Synth Biol; 2021 Jan; 10(1):84-93. PubMed ID: 33399467
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization and applications of Type I CRISPR-Cas systems.
    Hidalgo-Cantabrana C; Barrangou R
    Biochem Soc Trans; 2020 Feb; 48(1):15-23. PubMed ID: 31922192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.