These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 31647214)
1. Vanadium-Doped Strontium Molybdate with Exsolved Ni Nanoparticles as Anode Material for Solid Oxide Fuel Cells. Wan Y; Xing Y; Xie Y; Shi N; Xu J; Xia C ACS Appl Mater Interfaces; 2019 Nov; 11(45):42271-42279. PubMed ID: 31647214 [TBL] [Abstract][Full Text] [Related]
2. A-Site Ordered Double Perovskite with in Situ Exsolved Core-Shell Nanoparticles as Anode for Solid Oxide Fuel Cells. Hou N; Yao T; Li P; Yao X; Gan T; Fan L; Wang J; Zhi X; Zhao Y; Li Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):6995-7005. PubMed ID: 30668911 [TBL] [Abstract][Full Text] [Related]
3. Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells. Lo Faro M; Campagna Zignani S; Aricò AS Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698468 [TBL] [Abstract][Full Text] [Related]
4. In Situ Exsolved Ni-Decorated Ba(Ce Liu Y; Jia L; Chi B; Pu J; Li J ACS Omega; 2019 Dec; 4(25):21494-21499. PubMed ID: 31867545 [TBL] [Abstract][Full Text] [Related]
5. Exsolution of Ni Nanoparticles from A-Site-Deficient Layered Double Perovskites for Dry Reforming of Methane and as an Anode Material for a Solid Oxide Fuel Cell. Managutti PB; Tymen S; Liu X; Hernandez O; Prestipino C; Le Gal La Salle A; Paul S; Jalowiecki-Duhamel L; Dorcet V; Billard A; Briois P; Bahout M ACS Appl Mater Interfaces; 2021 Aug; 13(30):35719-35728. PubMed ID: 34288641 [TBL] [Abstract][Full Text] [Related]
6. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts. Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640 [TBL] [Abstract][Full Text] [Related]
7. Niobium Doped Lanthanum Strontium Ferrite as A Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells. Li J; Wei B; Cao Z; Yue X; Zhang Y; Lü Z ChemSusChem; 2018 Jan; 11(1):254-263. PubMed ID: 28976645 [TBL] [Abstract][Full Text] [Related]
8. Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. Song Y; Wang W; Qu J; Zhong Y; Yang G; Zhou W; Shao Z ACS Appl Mater Interfaces; 2018 Dec; 10(48):41257-41267. PubMed ID: 30383360 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Anode Performance and Coking Resistance by In Situ Exsolved Multiple-Twinned Co-Fe Nanoparticles for Solid Oxide Fuel Cells. Zhang W; Wang H; Guan K; Meng J; Wei Z; Liu X; Meng J ACS Appl Mater Interfaces; 2020 Jan; 12(1):461-473. PubMed ID: 31841308 [TBL] [Abstract][Full Text] [Related]
11. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells. Xiao G; Wang S; Lin Y; Zhang Y; An K; Chen F ACS Appl Mater Interfaces; 2014 Nov; 6(22):19990-6. PubMed ID: 25333295 [TBL] [Abstract][Full Text] [Related]
12. High-Performance Anode Material Sr2FeMo0.65Ni0.35O6-δ with In Situ Exsolved Nanoparticle Catalyst. Du Z; Zhao H; Yi S; Xia Q; Gong Y; Zhang Y; Cheng X; Li Y; Gu L; Świerczek K ACS Nano; 2016 Sep; 10(9):8660-9. PubMed ID: 27529355 [TBL] [Abstract][Full Text] [Related]
13. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration. Li M; Hua B; Luo JL; Jiang SP; Pu J; Chi B; Li J ACS Appl Mater Interfaces; 2016 Apr; 8(16):10293-301. PubMed ID: 27052726 [TBL] [Abstract][Full Text] [Related]
14. Perovskite Chromite With Li Z; Cui L; Luo J; Li J; Sun Y Front Chem; 2020; 8():595608. PubMed ID: 33598448 [TBL] [Abstract][Full Text] [Related]
15. B-Site Super-Excess Design Sr Song L; Chen D; Pan J; Hu X; Shen X; Huan Y; Wei T ACS Appl Mater Interfaces; 2023 Oct; 15(41):48296-48303. PubMed ID: 37812387 [TBL] [Abstract][Full Text] [Related]
16. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells. Song Y; Li H; Xu M; Yang G; Wang W; Ran R; Zhou W; Shao Z Small; 2020 Jul; 16(28):e2001859. PubMed ID: 32510184 [TBL] [Abstract][Full Text] [Related]
17. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570 [TBL] [Abstract][Full Text] [Related]
18. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells. Guo T; Dong X; Shirolkar MM; Song X; Wang M; Zhang L; Li M; Wang H ACS Appl Mater Interfaces; 2014 Sep; 6(18):16131-9. PubMed ID: 25162913 [TBL] [Abstract][Full Text] [Related]
19. High-Performance Co-production of Electricity and Light Olefins Enabled by Exsolved NiFe Alloy Nanoparticles from a Double-Perovskite Oxide Anode in Solid Oxide-Ion-Conducting Fuel Cells. Tan T; Wang Z; Huang K; Yang C ACS Nano; 2023 Jul; 17(14):13985-13996. PubMed ID: 37399582 [TBL] [Abstract][Full Text] [Related]
20. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells. Ding H; Tao Z; Liu S; Zhang J Sci Rep; 2015 Dec; 5():18129. PubMed ID: 26648509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]