These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 31647214)
21. Smart Dual-Exsolved Self-Assembled Anode Enables Efficient and Robust Methane-Fueled Solid Oxide Fuel Cells. Hu F; Chen K; Ling Y; Huang Y; Zhao S; Wang S; Gui L; He B; Zhao L Adv Sci (Weinh); 2024 Jan; 11(2):e2306845. PubMed ID: 37985567 [TBL] [Abstract][Full Text] [Related]
22. A redox-stable efficient anode for solid-oxide fuel cells. Tao S; Irvine JT Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533 [TBL] [Abstract][Full Text] [Related]
23. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: a novel coking-tolerant fuel cell anode catalyst. Sun YF; Li JH; Cui L; Hua B; Cui SH; Li J; Luo JL Nanoscale; 2015 Jul; 7(25):11173-81. PubMed ID: 26061756 [TBL] [Abstract][Full Text] [Related]
24. Synergistically Promoting Coking Resistance of a La Tang Y; Wang H; Wang R; Liu Q; Yan Z; Xu L; Liu X ACS Appl Mater Interfaces; 2022 Sep; 14(38):44002-44014. PubMed ID: 36106728 [TBL] [Abstract][Full Text] [Related]
25. Comparative Study of Exsolved and Impregnated Ni Nanoparticles Supported on Nanoporous Perovskites for Low-Temperature CO Oxidation. Vera E; Trillaud V; Metaouaa J; Aouine M; Boreave A; Burel L; Roiban IL; Steyer P; Vernoux P ACS Appl Mater Interfaces; 2024 Feb; 16(6):7219-7231. PubMed ID: 38308580 [TBL] [Abstract][Full Text] [Related]
26. Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase. Wang F; Wang W; Qu J; Zhong Y; Tade MO; Shao Z Environ Sci Technol; 2014 Oct; 48(20):12427-34. PubMed ID: 25229807 [TBL] [Abstract][Full Text] [Related]
27. Co-Exsolution of Ni-Based Alloy Catalysts for the Valorization of Carbon Dioxide and Methane. Najimu M; Jo S; Gilliard-AbdulAziz KL Acc Chem Res; 2023 Nov; 56(22):3132-3141. PubMed ID: 37939260 [TBL] [Abstract][Full Text] [Related]
28. Perovskite Oxyfluoride Ceramic with In Situ Exsolved Ni-Fe Nanoparticles for Direct CO Zhang S; Jiang Y; Han H; Li Y; Xia C ACS Appl Mater Interfaces; 2022 Jun; 14(25):28854-28864. PubMed ID: 35727035 [TBL] [Abstract][Full Text] [Related]
30. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode. Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993 [TBL] [Abstract][Full Text] [Related]
31. Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. Zhu Y; Zhou W; Ran R; Chen Y; Shao Z; Liu M Nano Lett; 2016 Jan; 16(1):512-8. PubMed ID: 26619096 [TBL] [Abstract][Full Text] [Related]
32. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells. Kim JY; Kim JH; Choi HW; Kim KH; Park SJ J Nanosci Nanotechnol; 2014 Aug; 14(8):6399-403. PubMed ID: 25936125 [TBL] [Abstract][Full Text] [Related]
33. Infiltrated Ni Shi N; Xie Y; Yang Y; Huan D; Pan Y; Peng R; Xia C; Chen C; Zhan Z; Lu Y ACS Appl Mater Interfaces; 2021 Feb; 13(4):4943-4954. PubMed ID: 33492121 [TBL] [Abstract][Full Text] [Related]
34. Development of Ni-Sr(V,Ti)O Serôdio Costa BF; Arias-Serrano BI; Yaremchenko AA Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009422 [TBL] [Abstract][Full Text] [Related]
35. SrMo Cascos V; Chivite Lacaba M; Biskup N; Fernández-Díaz MT; Alonso JA ACS Appl Mater Interfaces; 2024 Apr; 16(14):17474-17482. PubMed ID: 38563237 [TBL] [Abstract][Full Text] [Related]
36. Novel Mg-Doped SrMoO₃ Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells. Cascos V; Alonso JA; Fernández-Díaz MT Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773708 [TBL] [Abstract][Full Text] [Related]
37. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells. Liu T; Ren C; Fang S; Wang Y; Chen F ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919 [TBL] [Abstract][Full Text] [Related]
38. Unveiling the Interface Structure of the Exsolved Co-Fe Alloy Nanoparticles from Double Perovskite and Its Application in Solid Oxide Fuel Cells. Du Z; Gong Y; Zhao H; Zhang Y; Yi S; Gu L ACS Appl Mater Interfaces; 2021 Jan; 13(2):3287-3294. PubMed ID: 33400481 [TBL] [Abstract][Full Text] [Related]
39. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells. Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559 [TBL] [Abstract][Full Text] [Related]
40. Superior power density solid oxide fuel cells by enlarging the three-phase boundary region of a NiO-Ce0.8Gd0.2O1.9 composite anode through optimized surface structure. Yoon D; Su Q; Wang H; Manthiram A Phys Chem Chem Phys; 2013 Sep; 15(36):14966-72. PubMed ID: 23907182 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]