These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31647240)

  • 1. Effect of Size, Coverage, and Dispersity on the Potential-Controlled Ostwald Ripening of Metal Nanoparticles.
    Pattadar DK; Zamborini FP
    Langmuir; 2019 Dec; 35(50):16416-16426. PubMed ID: 31647240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size Stability Study of Catalytically Active Sub-2 nm Diameter Gold Nanoparticles Synthesized with Weak Stabilizers.
    Pattadar DK; Zamborini FP
    J Am Chem Soc; 2018 Oct; 140(43):14126-14133. PubMed ID: 30285436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte.
    Ivanova OS; Zamborini FP
    Anal Chem; 2010 Jul; 82(13):5844-50. PubMed ID: 20527732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Analysis of the Thermal Stability of 0.9-4.1 nm Diameter Gold Nanoclusters.
    Mainali BP; Pattadar DK; Sharma JN; Zamborini FP
    Anal Chem; 2023 Aug; 95(31):11649-11656. PubMed ID: 37506045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-Dependent Electrophoretic Deposition of Catalytic Gold Nanoparticles.
    Masitas RA; Allen SL; Zamborini FP
    J Am Chem Soc; 2016 Nov; 138(47):15295-15298. PubMed ID: 27806201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversing the Thermodynamics of Galvanic Replacement Reactions by Decreasing the Size of Gold Nanoparticles.
    Pattadar DK; Masitas RA; Stachurski CD; Cliffel DE; Zamborini FP
    J Am Chem Soc; 2020 Nov; 142(45):19268-19277. PubMed ID: 33140961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of large gold nanoparticles with deformation twinnings by one-step seeded growth with Cu(ii)-mediated Ostwald ripening for determining nitrile and isonitrile groups.
    Wu C; He H; Song Y; Bi C; Xing L; Du W; Li S; Xia H
    Nanoscale; 2020 Aug; 12(32):16934-16943. PubMed ID: 32776026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation-Dependent Oxidation of Metal Nanoparticles.
    Allen SL; Sharma JN; Zamborini FP
    J Am Chem Soc; 2017 Sep; 139(37):12895-12898. PubMed ID: 28853877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-Selective Electrophoretic Deposition of Gold Nanoparticles Mediated by Hydroquinone Oxidation.
    Allen SL; Zamborini FP
    Langmuir; 2019 Feb; 35(6):2137-2145. PubMed ID: 30649886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential.
    Masitas RA; Zamborini FP
    J Am Chem Soc; 2012 Mar; 134(11):5014-7. PubMed ID: 22372940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent electrochemical oxidation of silver nanoparticles.
    Ivanova OS; Zamborini FP
    J Am Chem Soc; 2010 Jan; 132(1):70-2. PubMed ID: 20000318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating Surface Facets of Metallic Aerogel Electrocatalysts by Size-Dependent Localized Ostwald Ripening.
    Duan W; Zhang P; Xiahou Y; Song Y; Bi C; Zhan J; Du W; Huang L; Möhwald H; Xia H
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23081-23093. PubMed ID: 29926731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical detection of low concentrations of mercury in water using gold nanoparticles.
    Ratner N; Mandler D
    Anal Chem; 2015; 87(10):5148-55. PubMed ID: 25892337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Metal Nanoparticle Aggregate Structure on the Thermodynamics of Oxidative Dissolution.
    Pattadar DK; Nambiar HN; Allen SL; Jasinski JB; Zamborini FP
    Langmuir; 2021 Jun; 37(24):7320-7327. PubMed ID: 34097413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Control of Self-Assembled Au Nanoparticles and Nanostructures Through the Variation of Deposition Amount, Annealing Duration, and Temperature on Si (111).
    Li MY; Sui M; Pandey P; Zhang Q; Kim ES; Lee J
    Nanoscale Res Lett; 2015 Dec; 10(1):380. PubMed ID: 26428015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces.
    Abdelmoti LG; Zamborini FP
    Langmuir; 2010 Aug; 26(16):13511-21. PubMed ID: 20695598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Resolution Observation of a Size-Dependent Change in the Ripening Modes of Mass-Selected Au Nanoclusters Involved in CO Oxidation.
    Hu KJ; Plant SR; Ellis PR; Brown CM; Bishop PT; Palmer RE
    J Am Chem Soc; 2015 Dec; 137(48):15161-8. PubMed ID: 26544914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative model of electrochemical Ostwald ripening and its application to the time-dependent electrode potential of nanocrystalline metals.
    Schröder A; Fleig J; Gryaznov D; Maier J; Sitte W
    J Phys Chem B; 2006 Jun; 110(25):12274-80. PubMed ID: 16800548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening.
    Verma S; Kumar S; Gokhale R; Burgess DJ
    Int J Pharm; 2011 Mar; 406(1-2):145-52. PubMed ID: 21185926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.