BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31647292)

  • 1. Cerebrovascular Dynamics During Continuous Motor Task.
    Müller M; Österreich M
    Physiol Res; 2019 Dec; 68(6):997-1004. PubMed ID: 31647292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease.
    Hilz MJ; Kolodny EH; Brys M; Stemper B; Haendl T; Marthol H
    J Neurol; 2004 May; 251(5):564-70. PubMed ID: 15164189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic cerebral autoregulation remains stable during physical challenge in healthy persons.
    Brys M; Brown CM; Marthol H; Franta R; Hilz MJ
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1048-54. PubMed ID: 12915389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability in cerebral blood flow velocity at rest and during mental stress in healthy individuals: Associations with cardiovascular parameters and cognitive performance.
    Montoro CI; Duschek S; Reyes Del Paso GA
    Biol Psychol; 2018 May; 135():149-158. PubMed ID: 29660362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral Microcirculatory Blood Flow Dynamics During Rest and a Continuous Motor Task.
    Müller M; Österreich M
    Front Physiol; 2019; 10():1355. PubMed ID: 31708802
    [No Abstract]   [Full Text] [Related]  

  • 6. Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress.
    Brown CM; Dütsch M; Ohring S; Neundörfer B; Hilz MJ
    Eur J Appl Physiol; 2004 Mar; 91(2-3):279-86. PubMed ID: 14574578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incomplete recovery of cerebral blood flow dynamics in sufficiently treated high blood pressure.
    Müller M; Österreich M; von Hessling A; Smith RS
    J Hypertens; 2019 Feb; 37(2):372-379. PubMed ID: 29995701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative representation of neural activation in multivariate models of neurovascular coupling in humans.
    Panerai RB; Hanby MF; Robinson TG; Haunton VJ
    J Neurophysiol; 2019 Aug; 122(2):833-843. PubMed ID: 31242062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic pressure-flow relationship of the cerebral circulation during acute increase in arterial pressure.
    Zhang R; Behbehani K; Levine BD
    J Physiol; 2009 Jun; 587(Pt 11):2567-77. PubMed ID: 19359366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation--a comparison between spontaneous and respiratory-induced oscillations.
    Reinhard M; Müller T; Guschlbauer B; Timmer J; Hetzel A
    Physiol Meas; 2003 Feb; 24(1):27-43. PubMed ID: 12636185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting cerebral blood flow response to orthostatic stress from resting dynamics: effects of healthy aging.
    Narayanan K; Collins JJ; Hamner J; Mukai S; Lipsitz LA
    Am J Physiol Regul Integr Comp Physiol; 2001 Sep; 281(3):R716-22. PubMed ID: 11506984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral autoregulation improves in epilepsy patients after temporal lobe surgery.
    Dütsch M; Devinsky O; Doyle W; Marthol H; Hilz MJ
    J Neurol; 2004 Oct; 251(10):1190-7. PubMed ID: 15503096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic cerebral autoregulation is preserved during isometric handgrip and head-down tilt in healthy volunteers.
    Skytioti M; Søvik S; Elstad M
    Physiol Rep; 2018 Mar; 6(6):e13656. PubMed ID: 29595918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation.
    Oudegeest-Sander MH; van Beek AH; Abbink K; Olde Rikkert MG; Hopman MT; Claassen JA
    Exp Physiol; 2014 Mar; 99(3):586-98. PubMed ID: 24363382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of cerebral autoregulation: the quandary of quantification.
    Tzeng YC; Ainslie PN; Cooke WH; Peebles KC; Willie CK; MacRae BA; Smirl JD; Horsman HM; Rickards CA
    Am J Physiol Heart Circ Physiol; 2012 Sep; 303(6):H658-71. PubMed ID: 22821992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability, asymmetry, and age influence on dynamic cerebral autoregulation measured by spontaneous fluctuations of blood pressure and cerebral blood flow velocities in healthy individuals.
    Ortega-Gutierrez S; Petersen N; Masurkar A; Reccius A; Huang A; Li M; Choi JH; Marshall RS
    J Neuroimaging; 2014; 24(4):379-86. PubMed ID: 23607680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grading of dynamic cerebral autoregulation without blood pressure recordings: a simple Doppler-based method.
    Sommerlade L; Schelter B; Timmer J; Reinhard M
    Ultrasound Med Biol; 2012 Sep; 38(9):1546-51. PubMed ID: 22763011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing.
    Claassen JA; Zhang R; Fu Q; Witkowski S; Levine BD
    J Appl Physiol (1985); 2007 Mar; 102(3):870-7. PubMed ID: 17110510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen administration, cerebral blood flow velocity, and dynamic cerebral autoregulation.
    Nishimura N; Iwasaki K; Ogawa Y; Shibata S
    Aviat Space Environ Med; 2007 Dec; 78(12):1121-7. PubMed ID: 18064916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility of task activation using the Addenbrooke's cognitive examination in healthy controls: A functional Transcranial Doppler ultrasonography study.
    Beishon L; Williams CAL; Panerai RB; Robinson TG; Haunton VJ
    J Neurosci Methods; 2017 Nov; 291():131-140. PubMed ID: 28827165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.