BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31647416)

  • 41. Systematic identification of
    Renganaath K; Chong R; Day L; Kosuri S; Kruglyak L; Albert FW
    Elife; 2020 Nov; 9():. PubMed ID: 33179598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extensive simulations assess the performance of genome-wide association mapping in various
    Peter J; Friedrich A; Liti G; Schacherer J
    Philos Trans R Soc Lond B Biol Sci; 2022 Jul; 377(1855):20200514. PubMed ID: 35634920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-resolution mapping of
    Kita R; Venkataram S; Zhou Y; Fraser HB
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):E10736-E10744. PubMed ID: 29183975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic Architecture of Domestication-Related Traits in Maize.
    Xue S; Bradbury PJ; Casstevens T; Holland JB
    Genetics; 2016 Sep; 204(1):99-113. PubMed ID: 27412713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing the complex architecture of polygenic traits in diverged yeast populations.
    Cubillos FA; Billi E; Zörgö E; Parts L; Fargier P; Omholt S; Blomberg A; Warringer J; Louis EJ; Liti G
    Mol Ecol; 2011 Apr; 20(7):1401-13. PubMed ID: 21261765
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel.
    Yang J; Jiang H; Yeh CT; Yu J; Jeddeloh JA; Nettleton D; Schnable PS
    Plant J; 2015 Nov; 84(3):587-96. PubMed ID: 26386250
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene-gene and gene-environment interactions in complex traits in yeast.
    Yadav A; Sinha H
    Yeast; 2018 Jun; 35(6):403-416. PubMed ID: 29322552
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detecting selection with a genetic cross.
    Fraser HB
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22323-22330. PubMed ID: 32848059
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.).
    Barreto FZ; Rosa JRBF; Balsalobre TWA; Pastina MM; Silva RR; Hoffmann HP; de Souza AP; Garcia AAF; Carneiro MS
    PLoS One; 2019; 14(7):e0219843. PubMed ID: 31318931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-Wide Search for Quantitative Trait Loci Controlling Important Plant and Flower Traits in Petunia Using an Interspecific Recombinant Inbred Population of
    Cao Z; Guo Y; Yang Q; He Y; Fetouh MI; Warner RM; Deng Z
    G3 (Bethesda); 2018 Jul; 8(7):2309-2317. PubMed ID: 29764961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China.
    Nie X; Huang C; You C; Li W; Zhao W; Shen C; Zhang B; Wang H; Yan Z; Dai B; Wang M; Zhang X; Lin Z
    BMC Genomics; 2016 May; 17():352. PubMed ID: 27177443
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome scan for nonadditive heterotic trait loci reveals mainly underdominant effects in Saccharomyces cerevisiae.
    Laiba E; Glikaite I; Levy Y; Pasternak Z; Fridman E
    Genome; 2016 Apr; 59(4):231-42. PubMed ID: 26967146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting quantitative traits from genome and phenome with near perfect accuracy.
    Märtens K; Hallin J; Warringer J; Liti G; Parts L
    Nat Commun; 2016 May; 7():11512. PubMed ID: 27160605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epistasis affecting litter size in mice.
    Peripato AC; De Brito RA; Matioli SR; Pletscher LS; Vaughn TT; Cheverud JM
    J Evol Biol; 2004 May; 17(3):593-602. PubMed ID: 15149402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pervasive Phenotypic Impact of a Large Nonrecombining Introgressed Region in Yeast.
    Brion C; Caradec C; Pflieger D; Friedrich A; Schacherer J
    Mol Biol Evol; 2020 Sep; 37(9):2520-2530. PubMed ID: 32359150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Powerful decomposition of complex traits in a diploid model.
    Hallin J; Märtens K; Young AI; Zackrisson M; Salinas F; Parts L; Warringer J; Liti G
    Nat Commun; 2016 Nov; 7():13311. PubMed ID: 27804950
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissecting complex traits using the Drosophila Synthetic Population Resource.
    Long AD; Macdonald SJ; King EG
    Trends Genet; 2014 Nov; 30(11):488-95. PubMed ID: 25175100
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Large-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species.
    Jung PP; Sigwalt A; Ohnuki S; de Montigny J; Ohya Y; Schacherer J
    G3 (Bethesda); 2016 Apr; 6(4):1063-71. PubMed ID: 26888866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics.
    Maclean CJ; Metzger BPH; Yang JR; Ho WC; Moyers B; Zhang J
    Mol Biol Evol; 2017 Oct; 34(10):2486-2502. PubMed ID: 28472365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [DIALLEL ANALYSIS OF STOMATAL TRAITS IN TRITICUM AESTIVUM L].
    Lamari N; Fayt V
    Tsitol Genet; 2015; 49(5):45-54. PubMed ID: 26638496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.