These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31647445)

  • 1. ECG Classification Algorithm Based on STDP and R-STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power Personal Wearable Devices.
    Amirshahi A; Hashemi M
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1483-1493. PubMed ID: 31647445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.
    Das A; Pradhapan P; Groenendaal W; Adiraju P; Rajan RT; Catthoor F; Schaafsma S; Krichmar JL; Dutt N; Van Hoof C
    Neural Netw; 2018 Mar; 99():134-147. PubMed ID: 29414535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices.
    Saadatnejad S; Oveisi M; Hashemi M
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):515-523. PubMed ID: 30990452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-Efficient Intelligent ECG Monitoring for Wearable Devices.
    Wang N; Zhou J; Dai G; Huang J; Xie Y
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1112-1121. PubMed ID: 31329129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REWARD: Design, Optimization, and Evaluation of a Real-Time Relative-Energy Wearable R-Peak Detection Algorithm
    Orlandic L; Giovanni E; Arza A; Yazdani S; Vesin JM; Atienza D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3341-3347. PubMed ID: 31946597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike-shape dependence of the spike-timing dependent synaptic plasticity in ferroelectric-tunnel-junction synapses.
    Stoliar P; Yamada H; Toyosaki Y; Sawa A
    Sci Rep; 2019 Nov; 9(1):17740. PubMed ID: 31780729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle.
    Bing Z; Meschede C; Chen G; Knoll A; Huang K
    Neural Netw; 2020 Jan; 121():21-36. PubMed ID: 31526952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fast and Robust Non-Sparse Signal Recovery Algorithm for Wearable ECG Telemonitoring Using ADMM-Based Block Sparse Bayesian Learning.
    Cheng Y; Ye Y; Hou M; He W; Li Y; Deng X
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29937512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task.
    Sanda P; Skorheim S; Bazhenov M
    PLoS Comput Biol; 2017 Sep; 13(9):e1005705. PubMed ID: 28961245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Neuromorphic Processing System With Spike-Driven SNN Processor for Wearable ECG Classification.
    Chu H; Yan Y; Gan L; Jia H; Qian L; Huan Y; Zheng L; Zou Z
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):511-523. PubMed ID: 35802543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-Spike-Based Visual Categorization Using Reward-Modulated STDP.
    Mozafari M; Kheradpisheh SR; Masquelier T; Nowzari-Dalini A; Ganjtabesh M
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6178-6190. PubMed ID: 29993898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Severity-Based Hierarchical ECG Classification Using Neural Networks.
    Diware S; Dash S; Gebregiorgis A; Joshi RV; Strydis C; Hamdioui S; Bishnoi R
    IEEE Trans Biomed Circuits Syst; 2023 Feb; 17(1):77-91. PubMed ID: 37015138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wearable Bio-signal Processing System with Ultra-low-power SoC and Collaborative Neural Network Classifier for Low Dimensional Data Communication.
    Wei Y; Cao Q; Hargrove L; Gu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4002-4007. PubMed ID: 33018877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 510 μW 0.738-mm
    Fang C; Wang C; Zhao S; Tian F; Yang J; Sawan M
    IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):507-520. PubMed ID: 37224372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistage Pruning of CNN Based ECG Classifiers for Edge Devices.
    Xiaolin L; Panicker RC; Cardiff B; John D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1965-1968. PubMed ID: 34891672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.