These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31647450)

  • 1. Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration.
    Yu X; He W; Li Y; Xue C; Li J; Zou J; Yang C
    IEEE Trans Cybern; 2021 Apr; 51(4):1822-1834. PubMed ID: 31647450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance-Based Gaussian Processes for Modeling Human Motor Behavior in Physical and Non-Physical Interaction.
    Medina JR; Borner H; Endo S; Hirche S
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2499-2511. PubMed ID: 30605092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.
    Chang PH; Kang SH
    J Neurosci Methods; 2010 May; 189(1):97-112. PubMed ID: 20298718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intelligent control framework for robot-aided resistance training using hybrid system modeling and impedance estimation.
    Xu G; Guo X; Zhai Y; Li H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3602-6. PubMed ID: 26737072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory tracking control of 7-DOF redundant robot based on estimation of intention in physical human-robot interaction.
    Ye L; Xiong G; Zeng C; Zhang H
    Sci Prog; 2020; 103(3):36850420953642. PubMed ID: 32924809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive variable impedance position/force tracking control of fracture reduction robot.
    Zheng G; Lei J; Hu L; Zhang L
    Int J Med Robot; 2023 Apr; 19(2):e2469. PubMed ID: 36302164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
    Modares H; Ranatunga I; Lewis FL; Popa DO
    IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiffness-based tuning of an adaptive impedance controller for robot-assisted rehabilitation of upper limbs.
    Maldonado B; Mendoza M; Bonilla I; Reyna-GutiƩrrez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3578-81. PubMed ID: 26737066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation.
    Yu X; Li B; He W; Feng Y; Cheng L; Silvestre C
    IEEE Trans Cybern; 2022 Dec; 52(12):13237-13249. PubMed ID: 34570713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Recurrent Neural Network Architecture-Based Intention Recognition for Human-Robot Collaboration.
    Gao X; Yan L; Wang G; Gerada C
    IEEE Trans Cybern; 2023 Mar; 53(3):1578-1586. PubMed ID: 34637387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Interaction Control of Compliant Robots Using Impedance Learning.
    Sun T; Yang J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotics-based synthesis of human motion.
    Khatib O; Demircan E; De Sapio V; Sentis L; Besier T; Delp S
    J Physiol Paris; 2009; 103(3-5):211-9. PubMed ID: 19665552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-in-the-Loop Robot Control for Human-Robot Collaboration: HUMAN INTENTION ESTIMATION AND SAFE TRAJECTORY TRACKING CONTROL FOR COLLABORATIVE TASKS.
    Dani AP; Salehi I; Rotithor G; Trombetta D; Ravichandar H
    IEEE Control Syst; 2020 Dec; 40(6):29-56. PubMed ID: 35002195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation.
    Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism.
    Liu Z; Chen C; Zhang Y; Chen CL
    IEEE Trans Cybern; 2015 Mar; 45(3):521-32. PubMed ID: 24968367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FMG- and RNN-Based Estimation of Motor Intention of Upper-Limb Motion in Human-Robot Collaboration.
    Anvaripour M; Khoshnam M; Menon C; Saif M
    Front Robot AI; 2020; 7():573096. PubMed ID: 33501334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.