These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 31647491)

  • 61. Mussel-Inspired and
    Jin L; Gao Y; Huang Y; Ou M; Liu Z; Zhang X; He C; Su B; Zhao W; Zhao C
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2663-2673. PubMed ID: 34984908
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Versatile CO
    Dou B; Lin S; Wang Y; Yang L; Yao A; Liao H; Tian S; Shang J; Lan J
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37867-37883. PubMed ID: 37522905
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fabrication of chitin/graphene oxide composite sponges with higher bilirubin adsorption capacity.
    Song X; Cui S; Li Z; Jiao Y; Zhou C
    J Mater Sci Mater Med; 2018 Jul; 29(7):108. PubMed ID: 29980863
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Polydimethylsiloxane-decorated magnetic cellulose nanofiber composite for highly efficient oil-water separation.
    Chu Z; Li Y; Zhou A; Zhang L; Zhang X; Yang Y; Yang Z
    Carbohydr Polym; 2022 Feb; 277():118787. PubMed ID: 34893220
    [TBL] [Abstract][Full Text] [Related]  

  • 65. MOF-derived LDH modified flame-retardant polyurethane sponge for high-performance oil-water separation: Interface engineering design based on bioinspiration.
    Piao J; Lu M; Ren J; Wang Y; Feng T; Wang Y; Jiao C; Chen X; Kuang S
    J Hazard Mater; 2023 Feb; 444(Pt A):130398. PubMed ID: 36402109
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inside-out templating: A strategy to decorate helical carbon nanotubes and 2D MoS
    Worajittiphon P; Majan P; Wangkawong K; Somsunan R; Jantrawut P; Panraksa P; Chaiwarit T; Srithep Y; Sommano SR; Jantanasakulwong K; Rachtanapun P
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133119. PubMed ID: 38880452
    [TBL] [Abstract][Full Text] [Related]  

  • 67. White Graphene-Cobalt Oxide Hybrid Filler Reinforced Polystyrene Nanofibers for Selective Oil Absorption.
    Ponnamma D; S Nair S; Parangusan H; K Hassan M; Adham S; Karim A; Al Ali Al-Maadeed M
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31861294
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Magnetic, self-heating and superhydrophobic sponge for solar-driven high-viscosity oil-water separation.
    Chu Z; Feng Y; Xu T; Zhu C; Li K; Li Y; Yang Y; Yang Z
    J Hazard Mater; 2023 Mar; 445():130553. PubMed ID: 36495637
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recent advances in carbon nanotube sponge-based sorption technologies for mitigation of marine oil spills.
    Kukkar D; Rani A; Kumar V; Younis SA; Zhang M; Lee SS; Tsang DCW; Kim KH
    J Colloid Interface Sci; 2020 Jun; 570():411-422. PubMed ID: 32199191
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A self-assembled superhydrophobic electrospun carbon-silica nanofiber sponge for selective removal and recovery of oils and organic solvents.
    Tai MH; Tan BY; Juay J; Sun DD; Leckie JO
    Chemistry; 2015 Mar; 21(14):5395-402. PubMed ID: 25597480
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Light-Propelled Super-Hydrophobic Sponge Motor and its Application in Oil-Water Separation.
    Sun XD; Yang H; Liang Y; Yan K; Liu L; Gao D; Ma J
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43205-43215. PubMed ID: 37638771
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Facile one-step fabrication of superhydrophobic melamine sponges by poly(phenol-amine) modification method for effective oil-water separation.
    Zheng K; Li W; Zhou S; Huang G
    J Hazard Mater; 2022 May; 429():128348. PubMed ID: 35101760
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Graphene oxide/polydimethylsiloxane composite sponge for removing Pb(ii) from water.
    Liu L; Chen J; Zhang W; Fan M; Gong Z; Zhang J
    RSC Adv; 2020 Jun; 10(38):22492-22499. PubMed ID: 35514590
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Super-Hydrophobic Magnetic Fly Ash Coated Polydimethylsiloxane (MFA@PDMS) Sponge as an Absorbent for Rapid and Efficient Oil/Water Separation.
    Zhao M; Ma X; Chao Y; Chen D; Liao Y
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145870
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route.
    Wang J; Wang H; Geng G
    Mar Pollut Bull; 2018 Feb; 127():108-116. PubMed ID: 29475642
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Superhydrophobic nanoporous polymer-modified sponge for in situ oil/water separation.
    Zhang J; Chen R; Liu J; Liu Q; Yu J; Zhang H; Jing X; Liu P; Wang J
    Chemosphere; 2020 Jan; 239():124793. PubMed ID: 31726530
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water.
    Wang G; Uyama H
    Sci Rep; 2016 Feb; 6():21265. PubMed ID: 26880297
    [TBL] [Abstract][Full Text] [Related]  

  • 78. One-Step Synthesis of Environmentally Friendly Superhydrophilic and Superhydrophobic Sponges for Oil/Water Separation.
    Lee YS; Lim YT; Choi WS
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30978934
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanically Robust and Flexible GO/PI Hybrid Aerogels as Highly Efficient Oil Absorbents.
    Zhang L; Wang Y; Wang R; Yin P; Wu J
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433030
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Graphene Oxide/Chitosan/Polyvinyl-Alcohol Composite Sponge as Effective Adsorbent for Dyes.
    Xu X; Tian M; Qu L; Zhu S
    Water Environ Res; 2017 Jun; 89(6):555-563. PubMed ID: 27095096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.