BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31647538)

  • 1. Chlamydia trachomatis recruits protein kinase C during infection.
    Sah P; Nelson NH; Shaw JH; Lutter EI
    Pathog Dis; 2019 Aug; 77(6):. PubMed ID: 31647538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival.
    Verbeke P; Welter-Stahl L; Ying S; Hansen J; Häcker G; Darville T; Ojcius DM
    PLoS Pathog; 2006 May; 2(5):e45. PubMed ID: 16710454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 5. Eukaryotic SNARE VAMP3 Dynamically Interacts with Multiple Chlamydial Inclusion Membrane Proteins.
    Bui DC; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jan; 89(2):. PubMed ID: 33229367
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic Inactivation of
    Shaw JH; Key CE; Snider TA; Sah P; Shaw EI; Fisher DJ; Lutter EI
    Front Cell Infect Microbiol; 2018; 8():415. PubMed ID: 30555802
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells.
    van Ooij C; Apodaca G; Engel J
    Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation.
    Nguyen PH; Lutter EI; Hackstadt T
    PLoS Pathog; 2018 Mar; 14(3):e1006911. PubMed ID: 29543918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network.
    Mital J; Miller NJ; Fischer ER; Hackstadt T
    Cell Microbiol; 2010 Sep; 12(9):1235-49. PubMed ID: 20331642
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Fischer A; Harrison KS; Ramirez Y; Auer D; Chowdhury SR; Prusty BK; Sauer F; Dimond Z; Kisker C; Hefty PS; Rudel T
    Elife; 2017 Mar; 6():. PubMed ID: 28347402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole.
    Luís MP; Pereira IS; Bugalhão JN; Simões CN; Mota C; Romão MJ; Mota LJ
    Infect Immun; 2023 Apr; 91(4):e0040522. PubMed ID: 36877064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.
    Aeberhard L; Banhart S; Fischer M; Jehmlich N; Rose L; Koch S; Laue M; Renard BY; Schmidt F; Heuer D
    PLoS Pathog; 2015 Jun; 11(6):e1004883. PubMed ID: 26042774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis.
    Subbarayal P; Karunakaran K; Winkler AC; Rother M; Gonzalez E; Meyer TF; Rudel T
    PLoS Pathog; 2015 Apr; 11(4):e1004846. PubMed ID: 25906164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host and Bacterial Glycolysis during
    Ende RJ; Derré I
    Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Wnt Signaling Pathways Impairs
    Kintner J; Moore CG; Whittimore JD; Butler M; Hall JV
    Front Cell Infect Microbiol; 2017; 7():501. PubMed ID: 29322031
    [No Abstract]   [Full Text] [Related]  

  • 17. Host HDL biogenesis machinery is recruited to the inclusion of Chlamydia trachomatis-infected cells and regulates chlamydial growth.
    Cox JV; Naher N; Abdelrahman YM; Belland RJ
    Cell Microbiol; 2012 Oct; 14(10):1497-512. PubMed ID: 22672264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydial Lytic Exit from Host Cells Is Plasmid Regulated.
    Yang C; Starr T; Song L; Carlson JH; Sturdevant GL; Beare PA; Whitmire WM; Caldwell HD
    mBio; 2015 Nov; 6(6):e01648-15. PubMed ID: 26556273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection.
    Faris R; Merling M; Andersen SE; Dooley CA; Hackstadt T; Weber MM
    Cell Rep; 2019 Mar; 26(12):3380-3390.e5. PubMed ID: 30893609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.